FIND EQUATIONS OF TANGENT DRAWN FROM THE POINT AWAY FROM THE CURVE

Equation of tangent drawn to the parabola will be in the form :

y = mx + (a/m)

Equation of tangent drawn to the ellipse will be in the form :

y = mx ± √a2 m2 + b2

Equation of tangent drawn to the hyperbola will be in the form

y = mx ± √a2 m2 + b2

Point of Contact of Parabola Ellipse and Hyperbola

Point of contact of parabola :

Point of contact of Ellipse :

Point of contact of Hyperbola :

Problem 1 :

Find the equations of the tangents to the parabola y2 = 5x from the point (5, 13). Also find the points of contact.

Solution :

The equation of the parabola is y2 = 5x.

y2 = 4ax

5x = 4ax

a = 5/4

Equation of the tangent  y = mx + a/m

y = mx + 5/4m --- (1)

Passes through the points (5, 13).

13 = 5m + 5/4m

13 = (20m2 + 5)/4m

52m = 20m2 + 5

20m2 - 52m + 5 = 0

20m2 - 2m - 50m + 5 = 0

2m(10m - 1) - 5(10m - 1) = 0

(2m - 5) (10m - 1) = 0

2m - 5 = 0 and 10m - 1 = 0

2m = 5 and 10m = 1 

m = 5/2 and m = 1/10

m = 5/2 substitute the equation (1).

y = 5x2 + 5452= 5x2 + 54 × 25y = 5x2 + 122y = 5x + 1

m = 1/10 substitute the equation (1).

y = x10 + 54110= x10 + 54 × 101y = x10 + 252y = x10 + 1251010y = x + 125
The points of contact are given by am2, 2amWher a = 54, m = 52 and 110If a = 54, m = 52= 54522, 25452= 54254, 10452= 54 × 425, 104 × 25 = 15, 1If a = 54, m = 110= 541102, 254110= 541100, 104110= 54 × 1001, 104 × 101 = (125, 25)

So, the points of contact are (1/5, 1), (125, 25).

Problem 2 :

Find the equations of the two tangents that can be drawn from the point (5, 2) to the ellipse 2x2 + 7y2 = 14.

Solution :

Given, 2x2 + 7y2 = 14

Dividing 14 on each sides.

2x214 + 7y214 = 1414x27 + y22 = 1 x2a2 + y2b2 = 1

Equation of tangent :

y = mx ± a2m2 + b22 =5m ± 7m2 + 22 - 5m = 7m2 + 2Squaring on both sides.(2 - 5m)2 = 7m2 + 222 + 52m2 - 2(2)(5m) = 7m2 + 24 + 25m2 - 20m = 7m2 + 24 + 25m2 - 20m - 7m2 - 2 = 018m2 - 20m + 2 = 0Dividing 2 on each sides.9m2 - 10m + 1 = 09m2 - 9m - 1m + 1 = 09m(m - 1) -1(m - 1) = 0(9m - 1) (m - 1) = 0m = 19 and m = 1While applying the values of m, we get y = mx ± a2m2 + b2Where m = 19y =19x ± 7192 + 2y = 19x ± 7181 + 2y = 19x ± 781 + 2y = 19x ± 7 + 16281y = 19x ± 16981y = 19x ± 1399y = x + 13x - 9y + 13 = 0Where m = 1y =x ± 7(1)2 + 2y = x ± 7 + 2y = x ± 9y = x ± 3x - y + 3 = 0 or x - y - 3 = 0

Problem 3 :

Find the equation of the two tangents that can be drawn

(i)  From the point (2, -3) to the parabola y2 = 4x.

(ii)  From the point (1, 3) to the ellipse 4x2 + 9y2 = 36.

(iii)  From the point (1, 2) to the hyperbola 2x2 - 3y2 = 6.

Solution :

(i)  Given, y2 = 4x

y2 = 4ax

4x = 4ax

a = 1

Passes through the points (2, -3).

Equation of the tangent to the parabola will be of the form y = mx + 1/m.

-3 = 2m + 1/m

-3 = (2m2 + 1)/m

-3m = 2m2 + 1

2m2 - 3m + 1 = 0

m = -b ± b2 - 4ac2a= -3 ± (3)2 - 4(2)(1)2(2)=-3 ± 9 - 84 =-3 ± 14 m =-3 ± 14 m =-3 + 14, m =-3 - 14 m = -12, m = -1Where m = -12y = mx + 1my = -12x + 1-12y = -12x - 2y = -x - 422y = -x - 4x + 2y + 4 = 0Where m = -1y = mx + 1my = -x + 1-1y = -x - 1x + y + 1 = 0

(ii)  Given, 4x2 + 9y2 = 36

Dividing 36 on each sides.

4x236 + 9y236 = 3636x29 + y24 = 1 x2a2 + y2b2 = 1a2 = 9, b2 = 4

Equation of tangent :

y = mx ± a2m2 + b23 =m ± 9m2 + 43 - m = 9m2 + 4Squaring on both sides.(3 - m)2 = 9m2 + 432 + m2 - 2(3)(m) = 9m2 + 49 + m2 - 6m = 9m2 + 4 9m2 + 4 - 9 - m2+ 6m= 08m2 + 6m - 5 = 08m2 + 10m - 4m - 5 = 02m(4m + 5) -1(4m + 5) = 0(2m - 1) (4m + 5) = 0m = 12 and m = -54While applying the values of m, we get y = mx ± a2m2 + b2Where m = 12y =12x ± 9122 + 4y = 12x ± 94 + 4y = 12x ± 9 + 164y = 12x ± 254y = 12x ± 522y = x + 5x - 2y + 5 = 0Where m = -54y = -54x ± 9-542 + 4y = -54x ± 92516 + 4y = -54x ± 22516 + 4y = -54x ± 225 + 6416y = -54x ± 28916y = -54x ± 1744y = -5x + 175x + 4y - 17 = 0

(iii) Given, 2x2 - 3y2 = 6

Dividing 6 on each sides.

2x26 - 3y29 = 1x23 - y22 = 1 x2a2 - y2b2 = 1a2 = 3, b2 = 2

Equation of tangent : 

y = mx ± a2m2 - b22 =m ± 3m2 - 22 - m = 3m2 - 2Squaring on both sides.(2 - m)2 = 3m2 - 222 + m2 - 2(2)(m) = 3m2 - 24 + m2 - 4m = 3m2 - 2 3m2 - 2 - 4 - m2+ 4m= 02m2 + 4m - 6 = 0Dividing 2 on each sides.m2 + 2m - 3 = 0m2 - m + 3m - 3 = 0m(m - 1) +3(m - 1) = 0(m - 1) (m + 3) = 0m = 1 and m = -3

y - y1 = m(x - x1)

when m = 1

y - 2 = 1(x - 1)

y - 2 = x - 1

y - 2 - x + 1 = 0

y - x - 1 = 0

Dividing -1 on each sides.

x - y  + 1 = 0

when m = -3

y - 2 = -3(x - 1)

y - 2 = -3x + 3

y - 2 + 3x - 3 = 0

3x + y - 5 = 0

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More