FIND AN EQUATION FOR THE CONIC SECTION WITH THE GIVEN PROPERTIES

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Write the equation of the conic section using the information given. You may want to use the graph to help you.

Problem 1 :

Circle with center (4, -1) and point on the circle (2, -4).

Solution :

Equation of the circle :

(x - h)2 + (y - k)2 = r2

Center (h, k) ==> (4, -1)

Radius of circle = (x2 - x1)2 + (y2 - y1)2 

Distance between center and point on the circle = radius

Center (4, -1) and (2, -4)

(2 - 4)2 + (-4 - (-1))2 

(-2)2 + (-4 + 1)2 

√4 + (-3)2 

√(4 + 9)

√13 units

(x - 4)2 + (y - (-1))2 = √132

(x - 4)2 + (y + 1)2 = 13

Problem 2 :

Hyperbola with vertices (6, -4) and (6, 4) and foci (6, -6) and (6, 6).

Solution :

From the given information, the hyperbola is symmetric about y-axis.

Equation of the Hyperbola :

(y - k)2 / a2  - (x - h)2 / b2 = 1 ---(1)

Midpoint of vertices = Center

= (x1 + x2)/2, (y1 + y2)/2

vertices (6, -4) and (6, 4)

= (6 + 6)/2, (-4 + 4)/2

= (12/2, 0/2)

= (6, 0)

Distance between center and vertex = (x2 - x1)2 + (y2 - y1)2 

Center (6, 0) vertex (6, -4)

(6 - 6)2 + (0 + 4)2 

√(0 + 16)

a = 4

Distance between center and foci = c

Center (6, 0) and foci (6, -6)

(6 - 6)2 + (0 + 6)2 

c = 6

For hyperbola, c2 = a2 + b2

62 = 42 + b2

b2 = 36 - 16

b2 = 20

Applying center, the values of a2 = 16 and b2 = 20

(y - 0)2 / 42  - (x - 6)2 / 20 = 1

[y2 / 16]  - (x - 6)2 / 20 = 1

Problem 3 :

Ellipse with vertices (-5, 1) and (-1, 1) and co-vertices (-3, 2) and (-3, 0)

Solution :

From the given information, the ellipse is symmetric about x-axis.

Equation of the Ellipse :

(x - h)2 / a2 (y - k)2 / b2 = 1 ---(1)

Midpoint of vertices = Center

= (x1 + x2)/2, (y1 + y2)/2

vertices (-5, 1) and (-1, 1)

= (-5 - 1)/2, (1 + 1)/2

= (-6/2, 2/2)

center = (-3, 1)

Distance between center and vertex = a

(x2 - x1)2 + (y2 - y1)2 

Center (-3, 1) vertex (-5, 1)

(-3 + 5)2 + (1 - 1)2 

√(4 + 0)

a = 2

Distance between center and covertex = b

Center (-3, 1) and co-vertex (-3, 2)

(-3 + 3)2 + (1 - 2)2 

√(0 + 1)

b = 1

Applying center, the values of a2 = 4 and b2 = 1

(x + 3)2 / 4 (y - 1)2 / 1 = 1

(x + 3)2 / 4 (y - 1)2 = 1

Problem 4 :

Parabola with vertex (-1, -2) and focus (4, -2).

Solution :

From the given information, the parabola is symmetric about x-axis.

(x - h)2 = 4a(y- k)

Applying the vertex (-1, -2) in the above equation, we get

(x + 1)2 = 4a(y + 2)

Distance between vertex and focus :

(x2 - x1)2 + (y2 - y1)2

vertex (-1, -2) and focus (4, -2).

(-1 - 4)2 + (-2 + 2)2

(-5)2 + (0)2

√25

a = 5

(x + 1)2 = 4(5)(y + 2)

(x + 1)2 = 20(y + 2)

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More