Any one of the Algebraic identities will be useful to find factors of expression.
(a + b)2 = a2 + 2ab + b2
(a - b)2 = a2 - 2ab + b2
a2 - b2 = (a + b)(a - b)
a3 - b3 = (a - b)(a2 + ab + b2)
a3 + b3 = (a + b)(a2 - ab + b2)
Factorize each polynomial using algebraic identity.
Problem 1 :
w² - 4
Solution :
w² - 4 = w² - 2²
a² - b² = (a + b) (a - b)
w² - 2² = (w + 2) (w - 2)
Problem 2 :
a² - b²
Solution :
a² - b² = (a + b) (a - b)
Problem 3 :
9 - 16t²
Solution :
9 - 16t² = 3² - (4t)²
a² - b² = (a + b) (a - b)
3² - (4t)² = (3 + 4t) (3 - 4t)
Problem 4 :
8a³ - 27b³
Solution :
8a³ - 27b³ = (2a)³ - (3b)³
a³ - b³ = (a - b) (a² + ab + b²)
= (2a - 3b) [(2a)² + (2a)(3b) + (3b)²]
= (2a - 3b) (4a² + 6ab + 9b²)
Problem 5 :
m³ + n³
Solution :
a³ + b³ = (a + b) (a² - ab + b²)
m³ + n³ = (m + n) (m² - mn + n²)
Problem 6 :
125x³ - 64
Solution :
125x³ - 64 = (5x)³ - 4³
a³ - b³ = (a - b) (a² + ab + b²)
= (5x - 4) [(5x)² + (5x)(4) + (4)²]
= (5x - 4) (25x² + 20x + 16)
Problem 7 :
x² + 10x + 25
Solution :
(a + b)² = a² + 2ab + b²
x² + 10x + 25 = (x)² + 2(x)(5) + (5)²
= (x + 5)²
= (x + 5) (x + 5)
Problem 8 :
36u² - 12uv + v²
Solution :
(a - b)² = a² - 2ab + b²
36u² - 12uv + v² = (6u)² - 2(6u)(v) + (v)²
= (6u - v)²
= (6u - v) (6u - v)
Problem 9 :
4a² - 4a + 1
Solution :
(a - b)² = a² - 2ab + b²
4a² - 4a + 1 = (2a)² - 2(2a)(1) + 1²
= (2a - 1)²
= (2a - 1) (2a - 1)
Problem 10 :
25x² - 36
Solution :
25x² - 36 = (5x)² - (6)²
a² - b² = (a + b) (a - b)
(5x)² - (6)² = (5x + 6) (5x - 6)
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM