Any one of the Algebraic identities will be useful to find factors of expression.
(a + b)2 = a2 + 2ab + b2
(a - b)2 = a2 - 2ab + b2
a2 - b2 = (a + b)(a - b)
a3 - b3 = (a - b)(a2 + ab + b2)
a3 + b3 = (a + b)(a2 - ab + b2)
Factorize each polynomial using algebraic identity.
Problem 1 :
36k² - 1
Solution :
36k² - 1 = (6k)² - 1²
a² - b² = (a + b) (a - b)
(6k)² - 1² = (6k + 1) (6k - 1)
Problem 2 :
x² - 9y²
Solution :
x² - 9y² = x² - (3y)²
a² - b² = (a + b) (a - b)
x² - (3y)² = (x + 3y) (x - 3y)
Problem 3 :
25m² - n²
Solution :
25m² - n² = (5m)² - n²
a² - b² = (a + b) (a - b)
(5m)² - n² = (5m + n) (5m - n)
Problem 4 :
8r³ - 729
Solution :
8r³ - 729 = 8r³ - 9³
a³ - b³ = (a - b) (a² + ab + b²)
8r³ - 9³ = (8r - 9) [(8r)² + (8r)(9) + 9²]
= (8r - 9) (64r² + 72r + 81)
Problem 5 :
p³ - 1000q³
Solution :
p³ - 1000q³ = p³ - (10q)³
a³ - b³ = (a - b) (a² + ab + b²)
p³ - (10q)³ = (p - 10q) [(p)² + (p)(10q) + (10q)²]
= (p - 10q) (p² + 10pq + 100q²)
Problem 6 :
27c³ + 125d³
Solution :
27c³ + 125d³ = (3c)³ + (5d)³
a³ + b³ = (a + b) (a² - ab + b²)
(3c)³ + (5d)³ = (3c + 5d) [(3c)² - (3c)(5d) + (5d)²]
= (3c + 5d) (9c² - 15cd + 25d²)
Problem 7 :
64y³- 216
Solution :
64y³- 216 = (4y)³ - 6³
a³ - b³ = (a - b) (a² + ab + b²)
(4y)³ - 6³ = (4y - 6) [(4y)² + (4y)(6) + 6²]
= (4y - 6) (16y² + 24y + 36)
Problem 8 :
36y² + 84y + 49
Solution :
(a + b)² = a² + 2ab + b²
36y² + 84y + 49 = (6y)² + 2(6y)(7) + 7²
= (6y + 7)²
= (6y + 7) (6y + 7)
Problem 9 :
h² + 4h + 4
Solution :
(a + b)² = a² + 2ab + b²
h² + 4h + 4 = h² + 2(h)(2) + 2²
= (h + 2)²
= (h + 2) (h + 2)
Problem 10 :
z² - 8z + 16
Solution :
(a - b)² = a² - 2ab + b²
z² - 8z + 16 = z² - 2(z)(4) + 4²
= (z - 4)²
= (z - 4) (z - 4)
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM