To expand the binomial, we will use the identities given below.
(a+b)2 = a2 + 2ab+ b2
(a-b)2 = a2 - 2ab+ b2
a2 - b2 = (a + b) (a - b)
(a+b)3 = a3 + 3a2b + 3ab2 + b3
(a-b)2 = a2 - + 3a2b + 3ab2 - b3
Expand the following :
Problem 1 :
(3m + 5)2
Solution :
= (3m + 5)2
Using the algebraic identity
(a + b)2 = a2 + 2ab + b2
Here a = 3m and b = 5
(3m + 5)2 = (3m)2 + 2(3m)(5) + 52
= 32m2 + 30m + 25
= 9m2 + 30m + 25
Problem 2 :
(5p - 1)2
Solution :
= (5p - 1)2
Using the algebraic identity
(a - b)2 = a2 - 2ab + b2
Here a = 5p and b = 1
(5p - 1)2 = (5p)2 - 2(5p)(1) + 12
= 52p2 - 10p + 1
= 25p2 - 10p + 1
Problem 3 :
(2n - 1)(2n + 3)
Solution :
= (2n - 1)(2n + 3)
Multiplying the both terms.
= 4n2 + 6n - 2n - 3
= 4n2 + 4n - 3
Problem 4 :
4p2 - 25q2
Solution :
= 4p2 - 25q2
Using the algebraic identity
a2 - b2 = (a + b)(a - b)
4p2 - 25q2 = (2p)2 - (5q)2
Here a = 2p and b = 5q
(2p)2 - (5q)2 = (2p + 5q)(2p - 5q)
Problem 5 :
(3 + m)3
Solution :
= (3 + m)3
Using the algebraic identity
(a + b)3 = a3 + 3a2b + 3ab2 + b3
Here a = 3 and b = m
(3 + m)3 = 33 + 3(3)2(m) + 3(3)(m)2 + m3
= 27 + 27m + 9m2 + m3
= m3 + 9m2 + 27m + 27
Problem 6 :
(2a + 5)3
Solution :
= (2a + 5)3
Using the algebraic identity
(a + b)3 = a3 + 3a2b + 3ab2 + b3
Here a = 2a and b = 5
(2a + 5)3 = (2a)3 + 3(2a)2(5) + 3(2a)(5)2 + (5)3
= 8a3 + 60a2 + 150a + 125
Problem 7 :
(3p + 4q)3
Solution :
= (3p + 4q)3
Using the algebraic identity
(a + b)3 = a3 + 3a2b + 3b2a + b3
Here a = 3p and b = 4q
(3p + 4q)3 = (3p)3 + 3(3p)2(4q) + 3(3p)(4q)2 + (4q)3
= 27p3 + 108p2q + 144q2p + 64q3
Problem 8 :
(5 - x)3
Solution :
= (5 - x)3
Using the algebraic identity
(a - b)3 = a3 - 3a2b + 3b2a - b3
Here a = 5 and b = x
(5 - x)3 = (5)3 - 3(5)2x + 3(x)2(5) - (x)3
= 125 - 75x + 15x2 - x3
Problem 9 :
(2x - 4y)3
Solution :
= (2x - 4y)3
Using the algebraic identity
(a - b)3 = a3 - 3a2b + 3b2a - b3
Here a = 2x and b = 4y
(2x - 4y)3 = (2x)3 - 3(2x)2(4y) + 3(4y)2(2x) - (4y)3
= 8x3 - 48x2y + 96xy2 - 64y3
Problem 10 :
(ab - c)3
Solution :
= (ab - c)3
Using the algebraic identity
(a - b)3 = a3 - 3a2b + 3b2a - b3
Here a = ab and b = c
(ab - c)3 = (ab)3 - 3(ab)2(c) + 3(c)2(ab) - (c)3
= a3b3 - 3a2b2c + 3abc2 - c3
Problem 1 :
(52)3
Solution :
= (50 + 2)3
Here a = 50 and b = 2
= 503 + 3(50)2 (2) + 3(50) 22 + 23
= 125000 + 6(2500) + 12(50) + 8
= 125000 + 15000 + 600 + 8
= 140608
Problem 2 :
(104)3
Solution :
= (104)3
= (100 + 4)3
Here a = 100 and b = 4
= (100)3 + 3(100)2(4) + 3(100) 42 + 43
= 1000000 + 120000 + 4800 + 64
= 1124864
Problem 3 :
(48)3
Solution :
= (48)3
= (50 - 2)3
a = 50 and b = 2
= 503 - 3(50)2 (2) + 3(50) 22 - 23
= 125000 - 15000 + 600 - 8
= 110592
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM