EXAMPLES ON ADDING AND SUBTRACTING RATIONAL EXPRESSIONS
Problem 1 :
2z 1 - 2z + 3z 2z + 1 - 3 4z 2 - 1
Solution:
2z 1 - 2z + 3z 2z + 1 - 3 4z 2 - 1 By comparing 4z 2 - 1 with the algebraic identity a 2 - b 2 = ( a + b ) ( a - b ) 4z 2 - 1 = ( 2z + 1 ) ( 2z - 1 ) = 2z 1 - 2z + 3z 2z + 1 - 3 ( 2z + 1 ) ( 2z - 1 ) LCM = ( 1 - 2z ) ( 2z + 1 ) = 2z 1 - 2z × 2z + 1 2z + 1 + 3z 2z + 1 × 1 - 2z 1 - 2z + 3 ( 2z + 1 ) ( 1 - 2z ) = 2z ( 2z + 1 ) + 3z ( 1 - 2z ) + 3 ( 1 - 2z ) ( 2z + 1 ) = 4z 2 + 2z + 3z - 6z 2 + 3 ( 1 - 2z ) ( 2z + 1 ) = - 2z 2 + 5z + 3 ( 1 - 2z ) ( 2z + 1 ) = - ( 1 + 2z ) ( z - 3 ) ( 1 - 2z ) ( 2z + 1 ) = - ( z - 3 ) 1 - 2z = z - 3 2z - 1
Problem 2 :
2r r 2 - s 2 + 1 r + s - 1 r - s
Solution:
2r r 2 - s 2 + 1 r + s - 1 r - s By comparing r 2 - s 2 with the algebraic identity a 2 - b 2 = ( a + b ) ( a - b ) r 2 - s 2 = ( r + s ) ( r - s ) = 2r ( r + s ) ( r - s ) + 1 r + s - 1 r - s LCM = ( r + s ) ( r - s ) = 2r ( r + s ) ( r - s ) + 1 r + s × r - s r - s - 1 r - s × r + s r + s = 2r + r - s - r - s ( r + s ) ( r - s ) = 2r - 2s ( r + s ) ( r - s ) = 2 ( r - s ) ( r + s ) ( r - s ) = 2 r + s
Problem 3 :
2x - 3 x 2 + 3x + 2 + 3x - 1 x 2 + 5x + 6
Solution:
2x - 3 x 2 + 3x + 2 + 3x - 1 x 2 + 5x + 6 x 2 + 3x + 2 = ( x + 1 ) ( x + 2 ) x 2 + 5x + 6 = ( x + 2 ) ( x + 3 ) = 2x - 3 ( x + 1 ) ( x + 2 ) + 3x - 1 ( x + 2 ) ( x + 3 ) LCM = ( x + 1 ) ( x + 2 ) ( x + 3 ) = 2x - 3 ( x + 1 ) ( x + 2 ) × x + 3 x + 3 + 3x - 1 ( x + 2 ) ( x + 3 ) × x + 1 x + 1 = ( 2x - 3 ) ( x + 3 ) + ( 3x - 1 ) ( x + 1 ) ( x + 1 ) ( x + 2 ) ( x + 3 ) = 2x 2 + 6x - 3x - 9 + 3x 2 + 3x - x - 1 ( x + 1 ) ( x + 2 ) ( x + 3 ) = 5x 2 + 5x - 10 ( x + 1 ) ( x + 2 ) ( x + 3 ) = 5 x 2 + x - 2 ( x + 1 ) ( x + 2 ) ( x + 3 ) = 5 ( x - 1 ) ( x + 2 ) ( x + 1 ) ( x + 2 ) ( x + 3 ) = 5 ( x - 1 ) ( x + 1 ) ( x + 3 )
Problem 4 :
x + 2 x 2 - 4x + 3 + 4x + 5 x 2 + 4x - 5
Solution:
x + 2 x 2 - 4x + 3 + 4x + 5 x 2 + 4x - 5 x 2 - 4x + 3 = ( x - 1 ) ( x - 3 ) x 2 + 4x - 5 = ( x - 1 ) ( x + 5 ) = x + 2 ( x - 1 ) ( x - 3 ) + 4x + 5 ( x - 1 ) ( x + 5 ) LCM = ( x - 1 ) ( x - 3 ) ( x + 5 ) = x + 2 ( x - 1 ) ( x - 3 ) × x + 5 x + 5 + 4x + 5 ( x - 1 ) ( x + 5 ) × x - 3 x - 3 = ( x + 2 ) ( x + 5 ) + ( 4x + 5 ) ( x - 3 ) ( x - 1 ) ( x - 3 ) ( x + 5 ) = x 2 + 7x + 10 + 4x 2 - 7x - 15 ( x - 1 ) ( x - 3 ) ( x + 5 ) = 5x 2 - 5 ( x - 1 ) ( x - 3 ) ( x + 5 ) = 5 x 2 - 1 ( x - 1 ) ( x - 3 ) ( x + 5 ) = 5 ( x + 1 ) ( x - 1 ) ( x - 1 ) ( x - 3 ) ( x + 5 ) = 5 ( x + 1 ) ( x - 3 ) ( x + 5 ) = 5x + 5 x 2 + 2x - 15
Problem 5 :
2x + 7 x 2 - 2x - 3 - 3x - 2 x 2 + 6x + 5
Solution:
2x + 7 x 2 - 2x - 3 - 3x - 2 x 2 + 6x + 5 x 2 - 2x - 3 = ( x + 1 ) ( x - 3 ) x 2 + 6x + 5 = ( x + 1 ) ( x + 5 ) = 2x + 7 ( x + 1 ) ( x - 3 ) - 3x - 2 ( x + 1 ) ( x + 5 ) LCM = ( x + 1 ) ( x - 3 ) ( x + 5 ) = 2x + 7 ( x + 1 ) ( x - 3 ) × x + 5 x + 5 - 3x - 2 ( x + 1 ) ( x + 5 ) × x - 3 x - 3 = ( 2x + 7 ) ( x + 5 ) - ( 3x - 2 ) ( x - 3 ) ( x + 1 ) ( x - 3 ) ( x + 5 ) = 2x 2 + 17x + 35 - 3x 2 + 11x - 6 ( x + 1 ) ( x - 3 ) ( x + 5 ) = - x 2 + 28x + 29 ( x + 1 ) ( x - 3 ) ( x + 5 ) = - ( x + 1 ) ( x - 29 ) ( x + 1 ) ( x - 3 ) ( x + 5 ) = - ( x - 29 ) ( x - 3 ) ( x + 5 )
Problem 6 :
3x - 8 x 2 + 6x + 8 + 2x - 3 x 2 + 3x + 2
Solution:
3x - 8 x 2 + 6x + 8 + 2x - 3 x 2 + 3x + 2 x 2 + 6x + 8 = ( x + 2 ) ( x + 4 ) x 2 + 3x + 2 = ( x + 1 ) ( x + 2 ) = 3x - 8 ( x + 2 ) ( x + 4 ) + 2x - 3 ( x + 1 ) ( x + 2 ) LCM = ( x + 1 ) ( x + 2 ) ( x + 4 ) = 3x - 8 ( x + 2 ) ( x + 4 ) × x + 1 x + 1 + 2x - 3 ( x + 1 ) ( x + 2 ) × x + 4 x + 4 = ( 3x - 8 ) ( x + 1 ) + ( 2x - 3 ) ( x + 4 ) ( x + 1 ) ( x + 2 ) ( x + 4 ) = 3x 2 - 5x - 8 + 2x 2 + 5x - 12 ( x + 1 ) ( x + 2 ) ( x + 4 ) = 5x 2 - 20 ( x + 1 ) ( x + 2 ) ( x + 4 ) = 5 x 2 - 4 ( x + 1 ) ( x + 2 ) ( x + 4 ) = 5 ( x + 2 ) ( x - 2 ) ( x + 1 ) ( x + 2 ) ( x + 4 ) = 5 ( x - 2 ) ( x + 1 ) ( x + 4 ) = 5x - 10 x 2 + 5x + 4