Use the function f and g given below to evaluate the following expressions:
f(x) = 3 - 2x and g(x) = x2 - 5x + 4
Problem 1 :
(a) g(0) (b) f(g(0)) (c) f(0) (d) g(f(0))
Solution:
(a) g(0) :
g(0) = (02 - 5(0) + 4)
= 4
(b) f(g(0)) :
f(g(0)) = f(4)
= 3 - 2(4)
= 3 - 8
= -5
(c) f(0) :
f(0) = 3 - 2(0)
= 3 - 0
= 3
(d) g(f(0)) :
g(f(0)) = g(3)
= 32 - 5(3) + 4
= 9 - 15 + 4
= -2
Problem 2 :
(a) g(-1) (b) f(g(-1)) (c) f(-1) (d) g(f(-1))
Solution:
(a) g(-1) :
g(-1) = (-1)2 - 5(-1) + 4
= 1 + 5 + 4
= 10
(b) f(g(-1)) :
f(g(-1)) = f(10)
= 3 - 2(10)
= 3 - 20
= -17
(c) f(-1) :
f(-1) = 3 - 2(-1)
= 3 + 2
= 5
(d) g(f(-1)) :
g(f(-1)) = g(5)
= 52 - 5(5) + 4
= 25 - 25 + 4
= 4
Problem 3 :
For f(x) = 3 - 2x and g(x) = x2 - 5x + 4
(a) (f ∘ g)(-2) (b) (g ∘ f)(-2)
Solution:
(a) (f ∘ g)(-2) :
(f ∘ g)(-2) = f ∘ g(-2)
= f[(-2)2 - 5(-2) + 4]
= f(4 + 10 + 4)
= f(18)
= 3 - 2(18)
= 3 - 36
= -33
(b) (g ∘ f)(-2) :
(g ∘ f)(-2) = g ∘ f(-2)
= g[3 - 2(-2)]
= g(3 + 4)
= g(7)
= 72 - 5(7) + 4
= 49 - 35 + 4
= 18
Problem 4 :
For f(x) = 3 - 2x and g(x) = x2 - 5x + 4
(a) (f ∘ g)(4) (b) (g ∘ f)(4)
Solution:
(a) (f ∘ g)(4) :
(f ∘ g)(4) = f ∘ g(4)
= f[42 - 5(4) + 4]
= f(16 - 20 + 4)
= f(0)
= 3 - 2(0)
= 3
(b) (g ∘ f)(4) :
(g ∘ f)(4) = g ∘ f(4)
= g[3 - 2(4)]
= g(3 - 8)
= g(-5)
= (-5)2 - 5(-5) + 4
= 25 + 25 + 4
= 54
Problem 5 :
For f(x) = 3 - 2x and g(x) = x2 - 5x + 4
(a) (f ∘ f)(6) (b) (g ∘ g)(6)
Solution:
(a) (f ∘ f)(6) :
(f ∘ f)(6) = f ∘ f(6)
= f[3 - 2(6)]
= f(3 - 12)
= f(-9)
= 3 - 2(-9)
= 3 + 18
= 21
(b) (g ∘ g)(6) :
(g ∘ g)(6) = g ∘ g(6)
= g[(6)2 - 5(6) + 4]
= g(36 - 30 + 4)
= g(10)
= (10)2 - 5(10) + 4
= 100 - 50 + 4
= 54
Problem 6 :
For f(x) = 3 - 2x and g(x) = x2 - 5x + 4
(a) (f ∘ f)(-4) (b) (g ∘ g)(-4)
Solution:
(a) (f ∘ f)(-4) :
(f ∘ f)(-4) = f ∘ f(-4)
= f[3 - 2(-4)]
= f(3 + 8)
= f(11)
= 3 - 2(11)
= 3 - 22
= -19
(b) (g ∘ g)(-4) :
(g ∘ g)(-4) = g ∘ g(-4)
= g[(-4)2 - 5(-4) + 4]
= g(16 + 20 + 4)
= g(40)
= (40)2 - 5(40) + 4
= 1600 - 200 + 4
= 1404
Problem 7 :
(a) (f ∘ g)(x) (b) (g ∘ f)(x)
Solution:
(a) (f ∘ g)(x) :
(f ∘ g)(x) = f ∘ g(x)
= f[x2 - 5x + 4]
= 3 - 2(x2 - 5x + 4)
= 3 - 2x2 + 10x - 8
= -2x2 + 10x - 5
(b) (g ∘ f)(x) :
(g ∘ f)(x) = g ∘ f(x)
= g[3 - 2x]
= (3 - 2x)2 - 5(3 - 2x) + 4
= 4x2 + 12x + 9 - 15 + 10x + 4
= 4x2 + 22x - 2
Problem 8 :
f(x) = 3 - 2x and g(x) = x2 - 5x + 4
(a) (f ∘ f)(x) (b) (g ∘ g)(x)
Solution:
(a) (f ∘ f)(x) :
(f ∘ f)(x) = f ∘ f(x)
= f[3 - 2x]
= 3 - 2(3 - 2x)
= 3 - 6 + 4x
= 4x - 3
(b) (g ∘ g)(x) :
(g ∘ g)(x) = g ∘ g(x)
= g[x2 - 5x + 4]
= (x2 - 5x + 4)2 - 5(x2 - 5x + 4) + 4
= x4 - 10x3 + 33x2 - 40x + 16 - 5x2 + 25x - 20 + 4
= x4 - 10x3 + 28x2 - 15x
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM