EVALUATING COMPOSITE FUNCTIONS FROM GRAPHS WORKSHEET

Problem 1 :

The first of the two graphs shows two functions ๐‘“ ๐‘Ž๐‘›๐‘‘ ๐‘”. The second shows two functions โ„Ž ๐‘Ž๐‘›๐‘‘ ๐‘˜. Use the graphs to compute the following:

composite-function-from-graph

1) (๐‘” โ—ฆ ๐‘“)(โˆ’4) =

2)  (๐‘“ โ—ฆ ๐‘”)(3) =

3) (๐‘“ โ—ฆ ๐‘“)(โˆ’2) =

4) (๐‘” โ—ฆ ๐‘”)(3) =

5) (๐‘” โ—ฆ ๐‘“)(โˆ’5) =

6) (๐‘” โ—ฆ ๐‘“)(โˆ’3) =

7) (โ„Ž โ—ฆ ๐‘˜)(0) =

8) (โ„Ž โ—ฆ ๐‘˜)(โˆ’1) =

9) (โ„Ž โ—ฆ ๐‘˜)(2) =

10) (โ„Ž โ—ฆ ๐‘˜)(โˆ’3) =

11) (๐‘˜ โ—ฆ โ„Ž)(0) =

12) (๐‘˜ โ—ฆ โ„Ž)(2) =

13) (๐‘˜ โ—ฆ โ„Ž)(โˆ’4) =

14) (๐‘˜ โ—ฆ โ„Ž)(โˆ’2) =

Solution

Problem 2 :

Refer to the graph to complete the statements below.

compositionfungraph

a) (f + g)(-3) = ______

b) (f ยท g)(2) = ______

c) (f/g)(-1) = ______

d) (f โˆ˜ g)(3) = ______

e) g-1(-4) = ______

f) Evaluate (f โˆ˜ f)(2) ______

g) Evaluate g(f(g(1))) ______

h) State the domain of f + g _____

i) State the domain of f/g. ______

j) Evaluate (f(3))3 - 4g(-2) ______

k) For what value(s) is f(x) = 3? _______

Solution

Answer Key

1) (๐‘” โ—ฆ ๐‘“)(โˆ’4) = -3

composite-function-from-graphq1p1.png

2)  (๐‘“ โ—ฆ ๐‘”)(3) = f[g(3)] = f[0] ==> 2

3) (๐‘“ โ—ฆ ๐‘“)(โˆ’2) = f[f(-2)] = f[3] ==> 1

4) (๐‘” โ—ฆ ๐‘”)(3) = g[g(3)] = g[0] ==> -3

5) (๐‘” โ—ฆ ๐‘“)(โˆ’5) = g[f(-5)] = g[-3] ==> -5

6) (๐‘” โ—ฆ ๐‘“)(โˆ’3) = g[f(-3)] = g[1.5] ==> -1.5

composite-function-from-graphq1p2.png

7) (โ„Ž โ—ฆ ๐‘˜)(0) = h[k(0)] = h[4] ==>  4

8) (โ„Ž โ—ฆ ๐‘˜)(โˆ’1) = h[k(-1)] = h[3] ==> 3.5

9) (โ„Ž โ—ฆ ๐‘˜)(2) = h[k(2)] = h[0] ==> 2

10) (โ„Ž โ—ฆ ๐‘˜)(โˆ’3) = h[k(-3)] = h[-5] ==> -0.5

11) (๐‘˜ โ—ฆ โ„Ž)(0) = k[h(0)] = k[2] ==> 0

12) (๐‘˜ โ—ฆ โ„Ž)(2) = k[h(2)] = k[3] ==> -5

13) (๐‘˜ โ—ฆ โ„Ž)(โˆ’4) = k[h(-4)] = k[0] ==> 4

14) (๐‘˜ โ—ฆ โ„Ž)(โˆ’2) = k[h(-2)] = k[1] ==> 3

2)  a)(f + g)(-3)  = -1

b)  (f ยท g)(2) = 0

c)  (f/g)(-1) = 2/(-3)

d)  (f โˆ˜ g)(3) = 4

e)  x = -3

f) (f โˆ˜ f)(2) = 2

g)  g(f(g(1))) = 0

h)  the domain of (f + g)(x) is [-3, 4].

i)  domain of (f/g)(x) = [-3, 1] u (3, 4]

k) (f(3))3 - 4g(-2) = 24

l)   x values are -2, 0 and 2.

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More