Problem 1 :
The first of the two graphs shows two functions ๐ ๐๐๐ ๐. The second shows two functions โ ๐๐๐ ๐. Use the graphs to compute the following:
1) (๐ โฆ ๐)(โ4) = 2) (๐ โฆ ๐)(3) = 3) (๐ โฆ ๐)(โ2) = 4) (๐ โฆ ๐)(3) = 5) (๐ โฆ ๐)(โ5) = 6) (๐ โฆ ๐)(โ3) = 7) (โ โฆ ๐)(0) = |
8) (โ โฆ ๐)(โ1) = 9) (โ โฆ ๐)(2) = 10) (โ โฆ ๐)(โ3) = 11) (๐ โฆ โ)(0) = 12) (๐ โฆ โ)(2) = 13) (๐ โฆ โ)(โ4) = 14) (๐ โฆ โ)(โ2) = |
Problem 2 :
Refer to the graph to complete the statements below.
a) (f + g)(-3) = ______
b) (f ยท g)(2) = ______
c) (f/g)(-1) = ______
d) (f โ g)(3) = ______
e) g-1(-4) = ______
f) Evaluate (f โ f)(2) ______
g) Evaluate g(f(g(1))) ______
h) State the domain of f + g _____
i) State the domain of f/g. ______
j) Evaluate (f(3))3 - 4g(-2) ______
k) For what value(s) is f(x) = 3? _______
1) (๐ โฆ ๐)(โ4) = -3
2) (๐ โฆ ๐)(3) = f[g(3)] = f[0] ==> 2
3) (๐ โฆ ๐)(โ2) = f[f(-2)] = f[3] ==> 1
4) (๐ โฆ ๐)(3) = g[g(3)] = g[0] ==> -3
5) (๐ โฆ ๐)(โ5) = g[f(-5)] = g[-3] ==> -5
6) (๐ โฆ ๐)(โ3) = g[f(-3)] = g[1.5] ==> -1.5
7) (โ โฆ ๐)(0) = h[k(0)] = h[4] ==> 4
8) (โ โฆ ๐)(โ1) = h[k(-1)] = h[3] ==> 3.5
9) (โ โฆ ๐)(2) = h[k(2)] = h[0] ==> 2
10) (โ โฆ ๐)(โ3) = h[k(-3)] = h[-5] ==> -0.5
11) (๐ โฆ โ)(0) = k[h(0)] = k[2] ==> 0
12) (๐ โฆ โ)(2) = k[h(2)] = k[3] ==> -5
13) (๐ โฆ โ)(โ4) = k[h(-4)] = k[0] ==> 4
14) (๐ โฆ โ)(โ2) = k[h(-2)] = k[1] ==> 3
2) a)(f + g)(-3) = -1
b) (f ยท g)(2) = 0
c) (f/g)(-1) = 2/(-3)
d) (f โ g)(3) = 4
e) x = -3
f) (f โ f)(2) = 2
g) g(f(g(1))) = 0
h) the domain of (f + g)(x) is [-3, 4].
i) domain of (f/g)(x) = [-3, 1] u (3, 4]
k) (f(3))3 - 4g(-2) = 24
l) x values are -2, 0 and 2.
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM