EVALUATE THE TRIGONOMETRIC FUNCTIONS USING COMPOUND ANGLE FORMULA
Compound Angle Formulas
sin (A + B) = sin A cos B + cos A sin B
sin (A - B) = sin A cos B - cos A sin B
cos (A + B) = cos A cos B - sin A sin B
cos (A - B) = cos A cos B + sin A sin B
If sin x = 4/5 and sin y = -12/13, 0 < x < π/2, 3π/2 < y < 2π, evaluate
Problem 1 :
cos (x + y)
Solution :
Given, sin x = 4/5 and sin y = -12/13
To find cos (x + y) :
|
cos y = 1 - sin2 y= 1 - -12132= 1 - 144169= 169 - 144169= 25169cos y = 513
|
cos (x + y) = cos x cos y - sin x sin y
cos (x + y)=35 ⋅ 513 - 45 ⋅ -1213 = 313 + 4865= 1565 + 4865= 6365cos (x + y) = 6365
Problem 2 :
sin (x + y)
Solution :
Given, sin x = 4/5 and sin y = -12/13
To find sin (x + y) :
sin (x + y) = sin x cos y + cos x sin y
cos x = 1 - sin2x= 1 - 452= 1 - 1625= 25 - 1625= 925cos x = 35
|
cos y = 1 - sin2 y= 1 - -12132= 1 - 144169= 169 - 144169= 25169cos y = 513
|
sin (x + y)=45 ⋅ 513 + 35 ⋅ -1213 = 413 - 3665= 2065 - 3665= -1665sin (x + y) = -1665
Problem 3 :
cos (x - y)
Solution :
Given, sin x = 4/5 and sin y = -12/13
To find cos (x - y) :
cos x = 1 - sin2x= 1 - 452= 1 - 1625= 25 - 1625= 925cos x = 35
|
cos y = 1 - sin2 y= 1 - -12132= 1 - 144169= 169 - 144169= 25169cos y = 513
|
cos (x - y) = cos x cos y + sin x sin y
cos (x - y)=35 ⋅ 513 + 45 ⋅ -1213 = 313 - 4865= 1565 - 4865= -3365cos (x - y) = -3365
Problem 4 :
sin (x - y)
Solution :
Given, sin x = 4/5 and sin y = -12/13
To find sin (x - y) :
sin (x - y) = sin x cos y - cos x sin y
cos x = 1 - sin2x= 1 - 452= 1 - 1625= 25 - 1625= 925cos x = 35
|
cos y = 1 - sin2 y= 1 - -12132= 1 - 144169= 169 - 144169= 25169cos y = 513
|
sin (x - y)=45 ⋅ 513 - 35 ⋅ -1213 = 413 + 3665= 2065 + 3665= 5665sin (x - y) = 5665
Problem 5 :
tan (x + y)
Solution :
Given, sin x = 4/5 and sin y = -12/13
To find tan (x + y) :
tan (x + y) = tan x + tan y1 - tan x tan y
tan x = sin xcos x
cos x = 1 - sin2x= 1 - 452= 1 - 1625= 25 - 1625= 925cos x = 35
tan x = 4535= 45 × 53tan x = 43
|
tan y = sin ycos y
cos y = 1 - sin2 y= 1 - -12132= 1 - 144169= 169 - 144169= 25169cos y = 513
tan y = -1213513= -1213 × 135tan y = -125
|
tan (x + y) = 43 - 1251 - 43 -125= 20 - 36151 + 4815 = -161515 + 4815 = -16156315 = -1615 × 1563tan (x + y)= -1663
Problem 6 :
tan (x - y)
Solution :
Given, sin x = 4/5 and sin y = -12/13
To find tan (x - y) :
tan (x - y) = tan x - tan y1 + tan x tan y
tan x = sin xcos x
cos x = 1 - sin2x= 1 - 452= 1 - 1625= 25 - 1625= 925cos x = 35
tan x = 4535= 45 × 53tan x = 43
|
tan y = sin ycos y
cos y = 1 - sin2 y= 1 - -12132= 1 - 144169= 169 - 144169= 25169cos y = 513
tan y = -1213513= -1213 × 135tan y = -125
|
tan (x - y) = 43 + 1251 + 43 -125= 20 + 36151 - 4815 = 561515 - 4815 = 5615-3315 = 5615 × -1533tan (x - y)= -5633