ESTIMATE THE DERIVATIVE OF A FUNCTION AT A GIVEN POINT

Estimate the derivative at the given point by using a calculator.

Problem 1 :

f(x) = x√(2 - x); find f'(-10). 

Solution :

f(x) = x√(2 - x)

Using product rule.

d/dx[f ⋅ g] = f'g + fg'

f'(x) = -x22 - x + 2 - x To find f'(-10) :f'(-10) = --1022 - (-10) + 2 - (-10) f'(-10) = 1022 + 10 + 2 + 10 = 52 + 10 + 2 + 10= 512 + 12

By using a calculator.

f'(-10) = 4.907

Problem 2 :

f(x) = sec(5x); find f'(2).

Solution :

f(x) = sec(5x)

Using product rule.

d/dx[f ⋅ g] = f'g + fg'

f'(x) = sec (5x)tan(5x) ⋅ 5

f'(x) = 5 sec 5x tan 5x

To find f'(2) :

f'(2) = 5 sec 5 ⋅ 2 tan 5 ⋅ 2

= 5 sec 10 tan 10

= 5 ⋅ (1/cos 10) tan 10 

By using a calculator.

f'(2) = -3.863

Problem 3 :

f(x) = In(√x); find f'(1).

Solution :

f(x) = In(√x)

f(x) = Inx12f(x) = 12 Inxf'(x) = 12 · 1xf'(x) = 12xTo find : f'(1) f'(1) = 12(1)= 12f'(1) = 0.5

Problem 4 :

f(x) = ex3; find f'(4).

Solution :

Given, f(x) = ex3f'(x) = ex3 · 13To find f'(4) :f'(4) = e43 · 13 = e1.333 · 13= 3.792· 0.333f'(4) = 1.26

Problem 5 :

f(x) = tan(sin x); find f'(-3)

Solution :

Given, f(x) = tan(sin x)

Using product rule.

d/dx[f ⋅ g] = f'g + fg'

f'(x) = sec2(sin x) cos x

f'(-3) = sec2(sin (-3)) cos (-3)

f'(-3) = sec2(sin 3) (cos 3)

= (1 + tan2(sin 3)) (cos 3)

= (1 + tan2 0.14112) × (-0.989992)

= sec0.14112 × (-0.989992)

= - sec0.14112 × 0.989992

= -(1/cos 0.14112)2 × 0.989992

By using a calculator.

f'(-3) = -1.009

Problem 6 :

f(x) = 2In(x); find f'(2).

Solution :

Problem 7 :

The model f(t) = x/cos x measures the height of bird in meters where t is seconds. Find f'(2).

Solution :

Given, f(t) = xcos x f'(t) = x sin x + cos xcos2 xTo find f'(2) :f'(2) = 2 sin 2 + cos 2cos2 2= 2(0.909) + (-0.4161)(cos 2)2= 2(0.909) -0.4161(0.4161)2= 1.818 -0.41610.17313921= 1.40190.17313921f'(2)= 8.097

f'(2) = 8.098 m/sec

Problem 8 :

The model f(t) = sin2(t) measures the depth of a submarine measured in feet where t is minutes. Find f'(12.5). 

Solution :

Given, f(t) = sin2(t)

f'(t) = 2 (sin t) (cos t)

To find f'(12.5) :

f'(12.5) = 2 (sin 12.5) (cos 12.5)

= 2 (-0.066) (0.9978)

= -0.132 × 0.9978

f'(12.5)  = -0.13 ft/min

Problem 9 :

The model f(t) = √x - 1/(x - 1) measures the number of stocks sold where t is days. Find f'(12).

Solution :

Given, x - 1 x - 1f'(t) = 12x + 1(x - 1)2= 12x + 1x2 + 12 - 2x= 12x + 1x2 + 1 - 2x= 2x + x2 + 1 - 2x2x x2 + 1 - 2x = 2x + x2 + 1 - 2x2x x2 + 2x - 4x(x) To find f'(12) : = 212 + (12)2 + 1 - 2(12)212 (12)2 + 212 - 412(12) = 212 + 144 + 1 - 24(288)12 + 212 - 12(48) = 212 + 121(288)12 + 212 - 12(48) = 212 + 12124212 = 2(3.464)+ 121242(3.464) = 6.928+ 121838.288 = 127.928838.288 = 0.1526

f'(12)  = 0.1526 stocks/day

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More