Problem 1 :
(x - 16)2 + (y - 6)2 = 1
Translated 4 left, 2 up
Solution:
The standard form of a circle is
(x - h)2 + (y - k)2 = r2
Where r is the radius of the circle and (h, k) is the center of the circle.
Center (h, k) = (16, 6)
When the circle is translated left 4 units and up 2 units.
The center should be changed as,
((x - 16) - (-4))2 + ((y - 6) - (2))2 = 1
(x - 16 + 4)2 + (y - 6 - 2)2 = 1
(x - 12)2 + (y - 8)2 = 1
Problem 2 :
(x + 5)2 + (y + 7)2 = 36
Translated 5 left, 4 down
Solution:
The standard form of a circle is
(x - h)2 + (y - k)2 = r2
Where r is the radius of the circle and (h, k) is the center of the circle.
(x - (-5))2 + (y - (-7))2 = 36
Center (h, k) = (-5, -7)
Translating 5 units left and 4 units down
((x + 5) - (-5))2 + ((y + 7) - (-4))2 = 36
(x + 5 + 5)2 + (y + 7 + 4)2 = 36
(x + 10)2 + (y + 11)2 = 36
Problem 3 :
x2 + y2 + 14x + 12y + 76 = 0
Translated 2 right, 4 down
Solution:
x2 + y2 + 14x + 12y + 76 = 0
x2 + 14x + y2 + 12y + 76 = 0
x2 + 2 ⋅ x ⋅ 7 + 72 - 72 + y2 + 2 ⋅ y ⋅ 6 + 62 - 62 + 76 = 0
(x + 7)2 - 49 + (y + 6)2 - 36 + 76 = 0
(x + 7)2 + (y + 6)2 - 85 + 76 = 0
(x + 7)2 + (y + 6)2 = 9
Before translation :
Center of the circle is (7, -6).
(x + 7)2 + (y + 6)2 = 9
After translation :
(x + 7 - 2)2 + (y + 6 - (-4))2 = 9
Translated 2 right, 4 down
So, equation of new circle is,
(x + 5)2 + (y + 10)2 = 9
Problem 4 :
x2 + y2 - 10x + 20y + 61 = 0
Translated 1 left, 2 down
Solution:
x2 + y2 - 10x + 20y + 61 = 0
x2 - 2 ⋅ x ⋅ 5 + 52 - 52+ y2+ 2 ⋅ y ⋅ 10 + 102 - 102 + 61 = 0
(x - 5)2 - 25 + (y + 10)2 - 100 + 61 = 0
(x - 5)2 + (y + 10)2 - 25 - 100 + 61 = 0
(x - 5)2 + (y + 10)2 - 64 = 0
(x - 5)2 + (y + 10)2 = 64
Before translation, the center will be at :
(5, -10)
(x - 5)2 + (y + 10)2 = 64
After translation, the center will be at :
Translated 1 left, 2 down
(x - 5 - (-1))2 + ((y + 10) - (-2))2 = 64
(x - 5 + 1)2 + (y + 10 + 2)2 = 64
(x - 4)2 + ((y + 12)2 = 64
Problem 5 :
x2 + y2 + 14x - 8y + 29 = 0
Translated 3 right, 4 down
Solution:
x2 + y2 + 14x - 8y + 29 = 0
x2 + 14x + y2 - 8y + 29 = 0
x2 + 2⋅x⋅7 + 72 - 72 + y2 - 2⋅y⋅4 + 42- 42 + 29 = 0
(x + 7)2 - 49 + (y - 4)2 - 16 + 29 = 0
(x + 7)2 + (y - 4)2 - 65 + 29 = 0
(x + 7)2 + (y - 4)2 - 36 = 0
(x + 7)2 + (y - 4)2 = 36
Before the translation, center will be at :
(-7, 4)
After the translation, center will be at :
(x + 7 - 3)2 + (y - 4 - (-4))2 = 36
(x + 4)2 + (y - 4 + 4)2 = 36
(x + 4)2 + y2 = 36
Problem 6 :
4y + y2 = -28x - x2 - 191
Translated 4 right
Solution:
4y + y2 = -28x - x2 - 191
x2 + 28x + y2 - 4y + 191 = 0
(x + 14)2 + (y - 2)2 - 142 - 22+ 191 = 0
(x + 14)2 + (y - 2)2 - 196 - 4 + 191 = 0
(x + 14)2 + (y - 2)2 - 200 + 191 = 0
(x + 14)2 + (y - 2)2 - 9 = 0
(x + 14)2 + (y - 2)2 = 9
Thus the coordinates of the center at (-14, -2). When the circle is translated right 4 units,
h = -14 + 4 = -10
So, equation of new circle is,
(x + 10)2 + (y + 2)2 = 9
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM