Problem 1 :
Find real numbers a and b such that :
a) a + ib = 4
b) (1 – 2i) (a + bi) = -5 – 10i
c) (a + 2i) (1 + bi) = 17 – 19i
Solution :
a) a + ib = 4
By equating the real and imaginary parts.
a = 4 and b = 0
b) (1 – 2i) (a + bi) = -5 – 10i
By multiplying the binomials, we get
a + bi - 2ia - 2bi2 = -5 - 10i
Here the value of i2 is -1.
a + bi - 2ia + 2b = -5 - 10i
(a + 2b) + i(b - 2a) = -5 - 10i
By equating the real and imaginary parts.
a + 2b = -5 ---(1) |
b - 2a = -10 -2a + b = -10 ----(2) |
(1) ⋅ 2 + (2)
2a + 4b - 2a + b = -10 - 10
5b = -20
b = -4
Applying the value of b in (1), we get
a - 8 = -5
a = 3
c.
(a + 2i) (1 + bi) = 17 – 19i
By multiplying two complex numbers on the left side, we get
a + abi + 2i + 2bi2 = 17 - 19i
Here the value of i2 is -1.
a + abi + 2i - 2b = 17 - 19i
(a - 2b) + i(ab + 2) = 17 - 19i
By equating the real and imaginary parts.
a - 2b = 17 a = 17 + 2 b --- (1) |
ab + 2 = -19 ab = -21 --- (2) |
Applying the value of a in (2), we get
(17 + 2b)b = -21
17b + 2b2 = -21
2b2 + 17b + 21 = 0
(b + 7)(2b + 3) = 0
b = -7, b = -3/2
When b = -7 a = -21/(-7) a = 3 |
When b = -3/2 a = -21/(-3/2) a = 14 |
Problem 2 :
Find a complex number z such that 2z -1 = iz – i. Write your answer in the form z = a + bi where a, b ϵ ℝ.
Solution :
2z -1 = iz – i
2z - iz = -i + 1
z(2 - i) = -i + 1
Dividing 2 - i on each sides.
Problem 3 :
if z = 4 + i and w = 3 – 2i find 2w* - iz.
Solution :
Given, z = 4 + i and w = 3 - 2i
To find 2w* - iz :
w* = 3 + 2i
= 2(3 +2i) - i(4 + i)
= 6 + 4i - 4i - i2
= 6 + 1
= 7
Problem 4 :
Find rationals a and b such that
(2 – 3i)/(2a + bi) = 3 + 2i.
Solution :
Given (2 – 3i)/(2a + bi) = 3 + 2i
Multiplying 2a + bi on each sides.
2 – 3i = (3 + 2i) (2a + bi)
2 - 3i = 6a + 3bi + 4ai + 2bi2
2 - 3i = 6a + 3bi + 4ai - 2b
2 - 3i = 6a - 2b + i(3b + 4a)
Equating real and imaginary parts.
6a - 2b = 2 3a - b = 1 --- (1) |
4a + 3b = -3 -----(2) |
(1) ⋅ 3 + (2)
9a - 3b + 4a + 3b = 3 - 3
13a = 0
a = 0
Applying the value of a in (1), we get
3(0) - b = 1
-b = 1
b = -1
Problem 5 :
a + ai is a root of x2 – 6x + b = 0 where a, b ϵ ℝ. Explain why b has two possible values. Find a in each case.
Solution :
Since one of the root is in the form of complex number, other root will be its conjugate.
So, the roots are a + ai and a - ai
Sum of the roots : = (a + ai) + (a - ai) = a + ai + a - ai = 2a |
Products of the roots : = (a + ai) (a - ai) = a2 + a2 = 2a2 |
x2 - (sum of the roots)x + products of the roots = 0
x2 - 2ax + 2a2 = 0
Given x2 - 6x + b = 0
x2 - 2ax + 2a2 = x2 - 6x + b
Equating coefficients of x -2a = -6 a = -6/-2 a = 3 |
Equating constants terms 2a2 = b 2(3)2 = b 18 = b |
Problem 6 :
Find real numbers x and y such that
(3x + 2yi) (1 - i) = (3y + 1)i – x.
Solution :
(3x + 2yi) (1 - i) = (3y + 1)i – x
3x - 3xi + 2yi - 2yi2 = 3yi + i - x
3x - 3xi + 2yi + 2y = 3yi + i - x
(3x + 2y) + i (2y - 3x) = i(3y + 1) - x
By equating the real and imaginary parts.
3x + 2y = -x 2y = -x - 3x -4x - 2y = 0 2x + y = 0 ---(1) |
2y - 3x = 3y + 1 -3x - y = 1--- (2) |
(1) + (2)
2x + y - 3x - y = 0 + 1
-x = 1
x = -1
By applying the value of x in (1), we get
-2 + y = 0
y = 2
Problem 7 :
Find real x and y such that :
a) x + iy = 0
b) (3 – 2i) (x + i) = 17 + yi
c) (x + iy)2 = x – iy
Solution :
a)
x + iy = 0
Equating real and imaginary parts.
x = 0 and y = 0
b)
(3 – 2i) (x + i) = 17 + yi
3x + 3i - 2ix + 2 = 17 + yi
(3x + 2) + i(3 - 2x) = 17 + yi
Equating real and imaginary parts.
3x + 2 = 17 --- (1)
x = 5
3 - 2x = y --- (2)
x = 5 substitute the equation (2).
3 - 2(5) = y
3 - 10 = y
-7 = y
So, the real numbers x and y is 5 and -7.
c)
(x + iy)2 = x – iy
x2 + i2y2 + 2(x)(iy) = x - iy
x2 - y2 + 2xiy = x - iy
Equating real and imaginary parts.
x2 - y2 = x --- (1)
2xy = -y --- (2)
2x = (-y) (1/y)
2x = -1
x = -1/2
x = -1/2 substitute the equation (1).
Problem 8 :
Find z if √z = 2/(3 – 2i) + 2 + 5i
Solution :
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM