Problem 1 :
Find real numbers x and y such that :
a) 2x + 3yi = -x - 6i
b) x2 + xi = 4 - 2i
c) (x + yi) (2 - i) = 8 + i
d) (3 + 2i) (x + yi) = -i
Solution :
a) 2x + 3yi = -x - 6i
Equating real parts : 2x = -x 2x + x = 0 3x = 0 x = 0 |
Equating imaginary parts : 3y = -6 y = -6/3 y = -2 |
b)
x2 + xi = 4 - 2i
By equating the imaginary parts.
x = -2
c) (x + yi) (2 - i) = 8 + i
2x - ix + 2yi - yi2 = 8 + i
2x - ix + 2yi + y = 8 + i
(2x + y) + i(2y - x) = 8 + i
Equating real parts : 2x + y = 8 -----(1) |
Equating real parts : 2y - x = 1 -----(2) |
1⋅(2) - (2)
4x + 2y - 2y + x = 16 - 1
5y = 15
y = 3
Applying the value of y in (2), we get
2(3) - x = 1
6 - x = 1
x = 6 - 1
x = 5
d)
(3 + 2i) (x + yi) = -i
3x + 3yi + 2ix + 2yi2 = -i
3x + 3yi + 2ix - 2y = -i
(3x - 2y) + i(3y + 2x) = -i
Equating real parts : 3x - 2y = 0 -----(1) |
Equating imaginary parts : 3y + 2x = -1 -----(2) |
(1) ⋅ 2 - (2) ⋅ 3
6x - 4y - 9y - 6x = 0 - (-3)
-13y = 3
y = -3/13
Applying the value of y in (1), we get
3x - 2(-3/13) = 0
3x = -6/13
x = -2/13
So, the real numbers x and y is -2/13 and -3/13.
Problem 2 :
Find x and y if x, y ϵ ℝ and :
a) 2(x + yi) = x - yi
b) (x + 2i) (y - i) = -4 - 7i
c) (x + i) (3 - iy) = 1 + 13i
d) (x + yi) (2 + i) = 2x - (y + 1)i
Solution :
a
2(x + yi) = x - yi
2x + 2yi = x - yi
By equating the real and imaginary parts.
2x = x 2x - x = 0 x = 0 |
2y = -y 2y + y = 0 3y = 0 y = 0 |
So, the real numbers x and y is 0 and 0.
b)
(x + 2i) (y - i) = -4 - 7i
xy - ix + 2iy - 2i2 = -4 - 7i
xy - ix + 2iy + 2 = -4 - 7i
(xy + 2) + i(2y - x) = -4 - 7i
By equating the real and imaginary parts.
xy + 2 = -4 xy = -6 y = -6/x --- (1) |
2y - x = -7 --- (2) |
y = -6/x substitute the equation (2).
2(-6/x) - x = -7
-x2 - 12 + 7x = 0
-(x2 + 12 - 7x) = 0
x2 - 7x + 12 = 0
(x - 3) (x - 4) = 0
x = 3 and x = 4
when x = 3 y = -6/3 y = -2 |
when x = 4 y = -6/4 y = -3/2 |
c
(x + i) (3 - iy) = 1 + 13i
3x - ixy + 3i - i2y = 1 + 13i
3x - ixy + 3i + y = 1 + 13i
(3x + y) + i(3 - xy) = 1 + 13i
By equating the real and imaginary parts.
3x + y = 1--- (1) |
3 - xy = 13 -xy = 10 y = -10/x --- (2) |
y = -10/x substitute the equation (1).
3x + (-10/x) = 1
3x2 - 10 = x
3x2 - x - 10 = 0
(3x + 5) (x - 2) = 0
x = -5/3 and x = 2
By applying the value of x in (1), we get
y = 6 and y = -5
d)
(x + yi) (2 + i) = 2x - (y + 1)i
2x + ix + 2iy + i2y = 2x - iy - i
2x + ix + 2iy - y = 2x - iy - i
(2x - y) + i(x + 2y) = 2x - iy - i
2x - y = 2x --- (1) -y = 0 y = 0 |
x + 2y = -y - 1 x + 3y = -1--- (2) |
By applying the value of y, we get
x = -1
Problem 3 :
Write z in the form a + bi where a, b ϵ ℝ and i = √-1, if the complex number z satisfies the equation 3z + 17i = iz + 11
Solution :
Given 3z + 17i = iz + 11
3z - iz = 11 - 17i
z(3 - i) = 11 - 17i
(a + ib)(3 - i) = 11 - 17i
3a - ia + 3bi - i2b = 11 - 17i
(3a + b) + i(-a + 3b) = 11 - 17i
3a + b = 11 -----(1) |
-a + 3b = -17 ----(2) |
(1) + (2) ⋅ 3
3a + b - 3a + 9b = 11 - 51
10b = -40
b = -4
Applying the value of b, we get
3a = 11 + 4
3a = 15
a = 5
z = 5 - 4i
Problem 4 :
The complex number z is a solution of the equation
√z = 4/(1 + i) + 7 - 2i.
Express z in the form a + bi where a and b ϵ ℤ.
Solution :
Let z = a + ib
2a = 142, then a = 71
-2b = 130, then b = -65.
Problem 5 :
Find the real values of m and n for which
3(m + ni) = n - 2mi - (1 - 2i).
Solution :
3(m + ni) = n - 2mi - (1 - 2i)
3m + 3ni = n - 2mi - 1 + 2i
3m + 3ni = (n - 1) + i(2 - 2m)
By equating real and imaginay parts.
3m = n - 1
n = 3m + 1 --- (1)
3n = 2 - 2m --- (2)
n = 3m + 1 substitute the equation (2).
3(3m + 1) = 2 - 2m
9m + 3 = 2 - 2m
9m + 2m = 2 - 3
11m = -1
m = -1/11
m = -1/11 substitute the equation (1).
n = 3(-1/11) + 1
n = -3/11 + 1
n = (-3 + 11)/11
n = 8/11
So, the real values m and n is -1/11 and 8/11.
Problem 6 :
Express z = 3i/(√2 - i) + 1 in the form a + bi where a, b ϵ ℝ, giving the exact values of the real and imaginary parts of z.
Solution :
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM