DETERMINE IF ANGLES ARE COTERMINAL

Procedure :

Find the difference between two angles, if it 360 or multiple of 360, they are coterminal. Otherwise they are not.

State if the two given angles are coterminal or not.

Problem 1 :

110º, -250º

Solution :

Step 1 :

Find the difference between the given two angle measures.

110º - (-250º) = 110º + 250º

110º - (-250º) = 360º

Step 2 :

The result of step 1 is 

= 360º

= 1(360º)

Which is a multiple of 360º.

So, 110º and -250º are coterminal angles.

Problem 2 :

125º, -415º

Solution :

Step 1 :

Find the difference between the given two angle measures.

125º - (-415º) = 125º + 415º

125º - (-415º) = 540º

Step 2 :

The result of step 1 is 

= 540º

Which is not a multiple of 360º.

So, 125º and -415º are not coterminal angles.

Problem 3 :

140º, -220º

Solution :

Step 1 :

Find the difference between the given two angle measures.

140º - (-220º) = 140º + 220º

140º - (-220º) = 360º

Step 2 :

The result of step 1 is 

= 360º

= 1(360º)

Which is a multiple of 360º.

So, 140º and -220º are coterminal angles.

Problem 4 :

160º, -380º

Solution :

Step 1 :

Find the difference between the given two angle measures.

160º - (-380º) = 160º + 380º

160º - (-380º) = 540º

Step 2 :

The result of step 1 is 

= 540º

Which is not a multiple of 360º.

So, 160º and -380º are not coterminal angles.

Problem 5 :

19𝜋18, -53𝜋18

Solution :

Step 1 :

Find the difference between the given two angle measures.

19𝜋18- -53𝜋18 = 19𝜋18 + 53𝜋1819𝜋18- -53𝜋18 = (19𝜋 + 53𝜋)1819𝜋18- -53𝜋18 = 72𝜋1819𝜋18- -53𝜋18 = 4𝜋

Step 2 :

The result of step 1 is

= 4π

= 2(2π)

Which is a multiple of 2π.

So, 19π/18, -53π/18 are coterminal angles.

Problem 6 :

35𝜋36, 107𝜋36

Solution :

Step 1 :

Find the difference between the given two angle measures.

35𝜋36- 107𝜋36 = 35𝜋36 - 107𝜋3635𝜋36- 107𝜋36 = (35𝜋 - 107𝜋)3635𝜋36- 107𝜋36 = -72𝜋3635𝜋36- 107𝜋36 = -2𝜋

Step 2 :

The result of step 1 is

= -4π

= -2(2π)

Which is a multiple of 2π.

So, 35π/36, 107π/36 are coterminal angles.

Problem 7 :

41𝜋36, 61𝜋36

Solution :

Step 1 :

Find the difference between the given two angle measures.

41𝜋36- 61𝜋36 = 41𝜋36 - 61𝜋3641𝜋36- 61𝜋36 = (41𝜋 - 61𝜋)3641𝜋36- 61𝜋36 = -20𝜋3641𝜋36- 61𝜋36 = -5𝜋9

Step 2 :

The result of step 1 is

= -5π/9

Which is not a multiple of 2π.

So, 41π/36, 61π/36 are not coterminal angles.

Problem 8 :

5𝜋4, -3𝜋4

Solution :

Step 1 :

Find the difference between the given two angle measures.

5𝜋4- -3𝜋4 = 5𝜋4 + 3𝜋45𝜋4- -3𝜋4 = (5𝜋 + 3𝜋)45𝜋4- -3𝜋4 = 8𝜋45𝜋4- -3𝜋4 = 2𝜋

Step 2 :

The result of step 1 is

= 2π

= 1(2π)

Which is a multiple of 2π.

So, 5π/4, -3π/4 are coterminal angles.

State if the given angles are coterminal.

Problem 9 :

185º, -545º

Solution :

Step 1 :

Find the difference between the given two angle measures.

185º - (-545º) = 185º + 545º

185º - (-545º) = 730º

Step 2 :

The result of step 1 is 

= 730º

Which is not a multiple of 730º.

So, 185º and -545º are not coterminal angles.

Problem 10 :

17𝜋36, 161𝜋36

Solution :

Step 1 :

Find the difference between the given two angle measures.

17𝜋36- 161𝜋36 = 17𝜋36 - 161𝜋3617𝜋36- 161𝜋36 = (17𝜋 - 161𝜋)3617𝜋36- 161𝜋36 = -144𝜋3617𝜋36- 161𝜋36 = -4𝜋

Step 2 :

The result of step 1 is

= -4π

= -2(2π)

Which is a multiple of 2π.

So, 17π/36, 161π/36 are coterminal angles.

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More