CONVERTING POLAR COORDINATES TO RECTANGULAR COORDINATES

Find the rectangular coordinates of the point with polar coordinates.

Problem 1 :

(4, 4π/3)

Solution :

Polar coordinates will be in the form (r, θ)

Rectangular coordinates in the form of

(x, y) ==> (r cos θ, y sin θ)

r cos θ = 4 cos 4π/3

= 4 cos (π + π/3)

Angle lies in 3rd quadrant

= -4 cos (π/3)

= -4(1/2)

= -2

r sin θ = 4 sin 4π/3

= 4 sin (π + π/3)

Angle lies in 3rd quadrant

= -4 sin (π/3)

= -4(√3/2)

= -2√3

So, the rectangular coordinate is (-2, -2√3).

Problem 2 :

(3, 315°)

Solution :

Polar coordinates will be in the form (r, θ)

Rectangular coordinates in the form of

(x, y) ==> (r cos θ, y sin θ)

r cos θ = 3 cos 315

= 3 cos (270+45)

Angle lies in 4th quadrant

= 3 sin (45)

= 3(√2/2)

 = 3√2/2

r sin θ = 3 sin 315

= 3 sin (270 + 45)

Angle lies in 4th quadrant

= -3 sin (45)

= -3(√2/2)

= -3√2/2

So, the rectangular coordinate is (3√2/2, -3√2/2).

Problem 3 :

(-5, -π/6)

Solution :

Polar coordinates will be in the form (r, θ)

Rectangular coordinates in the form of

(x, y) ==> (r cos θ, y sin θ)

r cos θ = -5 cos (-π/6)

= -5 cos (π/6)

Angle lies in 1st quadrant

= -5 cos (π/6)

= -5√3/2

r sin θ = -5 sin (-π/6)

= 5 sin (π/6)

Angle lies in 1st quadrant

= 5 (1/2)

= 5/2

So, the rectangular coordinate is (-5√3/2, 5/2).

Problem 4 :

(6, π)

Solution :

Polar coordinates will be in the form (r, θ)

Rectangular coordinates in the form of

(x, y) ==> (r cos θ, y sin θ)

r cos θ = 6 cos (π)

= 6 cos π

= 6(-1)

= -6

r sin θ = 6 sin (π)

= 6 sin π

= 6 (0)

= 0

So, the rectangular coordinate is (-6, 0).

Problem 5 :

(1/2, 3π/4)

Solution :

Polar coordinates will be in the form (r, θ)

Rectangular coordinates in the form of

(x, y) ==> (r cos θ, y sin θ)

r cos θ = (1/2) cos (3π/4)

= (1/2) cos (π - π/4)

Angle lies in 2nd quadrant

= (1/2) cos (π/4)

= (1/2) (-√2/2)

= -√2/4

r sin θ = (1/2) sin (3π/4)

= (1/2) sin (π - π/4)

Angle lies in 2nd quadrant

= (1/2) sin (π/4)

= (1/2) (√2/2)

= √2/4

So, the rectangular coordinate is (-√2/4√2/4).

Problem 6 :

(-2, π/6)

Solution :

Polar coordinates will be in the form (r, θ)

Rectangular coordinates in the form of

(x, y) ==> (r cos θ, y sin θ)

r cos θ = -2 cos (π/6)

Angle lies in 1st quadrant

= -2 (√3/2)

= -√3

r sin θ = -2 sin (π/6)

Angle lies in 1st quadrant

= -2 (1/2)

= -2

So, the rectangular coordinate is (-√3, -2).

Problem 7 :

(10, π/3)

Solution :

Polar coordinates will be in the form (r, θ)

Rectangular coordinates in the form of

(x, y) ==> (r cos θ, y sin θ)

r cos θ = 10 cos (π/3)

Angle lies in 1st quadrant

= 10 (1/2)

= 5

r sin θ = 10 sin (π/3)

Angle lies in 1st quadrant

= 10 (√3/2)

= 5√3

So, the rectangular coordinate is (5, 5√3).

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More