Convert the quadratic function from standard form to
i) Vertex form
ii) Factored form
Problem 1 :
y = x2 - 8x + 15
Solution:
Vertex Form:
y = a(x - h)2 + k
y = x2 - 8x + 15
y = x2 - 8x + 42 + 15 - 42
y = (x - 4)2 - 1
Factored Form:
y = a(x - p) (x - q)
y = x2 - 8x + 15
y = x2 - 5x - 3x + 15
y = x(x - 5) - 3(x - 5)
y = (x - 3) (x - 5)
Problem 2 :
y = x2 - 4x
Solution:
Vertex Form:
y = a(x - h)2 + k
y = x2 - 4x + 22 - 22
y = (x - 2)2 - 4
Factored Form:
y = a(x - p) (x - q)
y = x2 - 4x
y = x(x - 4)
Problem 3 :
y = x2 + 4x + 3
Solution:
Vertex Form:
y = a(x - h)2 + k
y = x2 + 4x + 3
y = x2 + 4x + 22 + 3 - 22
y = (x + 2)2 - 1
Factored Form:
y = a(x - p) (x - q)
y = x2 + 4x + 3
y = x2 + x + 3x + 3
y = x(x + 1) + 3(x + 1)
y = (x + 1) (x + 3)
Problem 4 :
y = 3x2 - 6x + 3
Solution:
Vertex Form:
y = a(x - h)2 + k
y = 3x2 - 6x + 3
y = 3(x2 - 2x + 1)
y = 3(x2 - 2x + 12 + 1 - 12)
y = 3(x - 1)2 + 0
Factored Form:
y = a(x - p) (x - q)
y = 3x2 - 6x + 3
y = 3(x2 - 2x + 1)
y = 3(x - 1)(x - 1)
Problem 5 :
y = x2 + 6x + 5
Solution:
Vertex Form:
y = a(x - h)2 + k
y = x2 + 6x + 5
y = x2 + 6x + 32 + 5 - 32
y = (x + 3)2 - 4
Factored Form:
y = a(x - p) (x - q)
y = x2 + 6x + 5
y = x2 + x + 5x + 5
y = x(x + 1) + 5(x + 1)
y = (x + 1) (x + 5)
Convert the quadratic function from factored to
i) Standard form
ii) Vertex form
Problem 6 :
y = (x + 4)(x + 3)
Solution:
Standard Form:
y = ax2 + bx + c
y = (x + 4)(x + 3)
y = x2 + 3x + 4x + 12
y = x2 + 7x + 12
Vertex Form:
y = a(x - h)2 + k
y = x2 + 7x + 12
Problem 7 :
y = -2(x + 2)(x - 1)
Solution:
Standard Form:
y = ax2 + bx + c
y = -2(x + 2)(x - 1)
y = -2(x2 - x + 2x - 2)
y = -2(x2 + x - 2)
y = -2x2 - x + 4
Vertex Form:
y = a(x - h)2 + k
y = -2x2 - x + 4
Problem 8 :
y = 3(2x - 1)(x - 1)
Solution:
Standard Form:
y = ax2 + bx + c
y = 3(2x - 1)(x - 1)
y = 3(2x2 - 2x - x + 1)
y = 3(2x2 - 3x + 1)
y = 6x2 - 9x + 3
Vertex Form:
y = a(x - h)2 + k
y = 6x2 - 9x + 3
Problem 9 :
y = (5x + 1)(x - 3)
Standard Form:
y = ax2 + bx + c
y = (5x + 1)(x - 3)
y = 5x2 - 15x + x - 3
y = 5x2 - 14x - 3
Vertex Form:
y = a(x - h)2 + k
y = 5x2 - 14x - 3
Problem 10 :
y = (x - 10)(x - 6)
Solution:
Standard Form:
y = ax2 + bx + c
y = (x - 10)(x - 6)
y = x2 - 6x - 10x + 60
y = x2 - 16x + 60
Vertex Form:
y = a(x - h)2 + k
y = x2 - 16x + 60
y = x2 - 16x + 82 - 82 + 60
y = (x - 8)2 - 4
Convert the quadratic function from vertex form to
i) Standard form
ii) Factored form
Problem 11 :
y = (x - 4)2 - 9
Solution:
Standard Form:
y = ax2 + bx + c
y = (x - 4)2 - 9
y = (x2 + 16 - 8x) - 9
y = x2 - 8x + 7
Factored Form:
y = a(x - p) (x - q)
y = x2 - 8x + 7
y = x2 - x - 7x + 7
y = x(x - 1) -7(x - 1)
y = (x - 1) (x - 7)
Problem 12 :
y = (x + 2)2 - 9
Standard Form:
y = ax2 + bx + c
y = (x + 2)2 - 9
y = x2 + 4 + 4x - 9
y = x2 + 4x - 5
Factored Form:
y = a(x - p) (x - q)
y = x2 + 4x - 5
y = x2 - x + 5x - 5
y = x(x - 1) + 5(x - 1)
y = (x - 1) (x + 5)
Problem 13 :
Solution:
Standard Form:
y = ax2 + bx + c
Factored Form:
y = a(x - p) (x - q)
y = x2 + 7x + 12
y = (x + 4)(x + 3)
Problem 14 :
Solution:
Standard Form:
y = ax2 + bx + c
Factored Form:
y = a(x - p) (x - q)
y = 6x2 - 9x + 3
y = 6x2 - 6x - 3x + 3
y = 6x(x - 1) - 3(x - 1)
y = (6x - 3) (x - 1)
y = 3(2x - 1) (x - 1)
Problem 15 :
Solution:
Standard Form:
y = ax2 + bx + c
Factored Form:
y = a(x - p) (x - q)
y = 5x2 - 14x - 3
y = 5x2 + x - 15x - 3
y = x(5x + 1) - 3(5x + 1)
y = (5x + 1) (x - 3)
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM