COMPOSTION OF SQUARE ROOT FUNCTION

The composition of a function g with a function f is :

h(x) = g(f (x))

The domain of h is the set of all x-values such that x is in the domain of f and f (x) is in the domain of g.

Example 1 :

Let f(x) = x2 - 1 and let g(x) = √x. Find the domain of the composition functions

(i)  g∘f 

(ii)  f∘g 

Solution :

Domain of f(x) :

f(x) = x2 - 1

All real values, so domain is (-∞, ∞)

Domain of g(x) :

g(x) = √x

All positive values, so domain is [0, ∞)

(i)  g∘f 

g∘f  = g( f(x) )

  = g(x2 - 1)

Here instead of x, we have  x2 - 1. So, in the function g(x) we have to apply x2 - 1.

g∘f  = √(x2 - 1).

Domain of g∘f :

√(x2 - 1)  ≥ 0

(x2 - 1)  ≥ 0

(x + 1) (x - 1)  ≥ 0

 ≥ 1 and  x ≥ -1

Comparing domain of f(x) and this domain the intersection part is (-∞, -1] and [1, ∞).

So the required domain for  g∘f is (-∞, -1] U [1, ∞).

(ii)  f∘g 

f∘g  = f( g(x) )

  = f(√x)

Here we see √x instead of x, so we will apply x as √x in the function f(x).

f∘g = (√x)2 - 1

x - 1

Domain of f∘g :

Domain of x - 1 is all real values.

Comparing domain of g(x) and this domain the intersection part is [0, ∞).

So, the domain f∘g is [0, ∞). 

Example 2 :

Let

f(x) = 1/(x2 - 1) and g(x) = √(x - 2)

Find the domain of f(g(x)).

Solution :

f(x) = 1x2-1 and g(x) = x - 2x - 21x - 22-1 1x-2-1 1x-3

Domain of g(x) is real values ≥ 2

Domain of 1/(x - 3) is all real values except 3.

So, the required domain is f(g(x)) is [2, 3) U (3, ∞).

Example 3 :

Let

f(x) = √(x + 2) and g(x) = x2

Find the domain of f(g(x)).

Solution :

f(g(x)) = f(x2)

Here instead of x, we have x2. So in the function f(x), we have to apply the value x2

√(x2 + 2)

Even though we give negative values of x, f(g(x)) will give us positive result.

So, the domain of f(g(x)) is all real values.

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More