Choose the correct or the most suitable answer from the given four alternatives :
Problem 1 :
in + in + 1 + in+ 2 + in + 3 is
(1) 0 (2) 1 (3) -1 (4) i
Problem 2 :
(1) 1 + i (2) i (3) 1 (4) 0
Problem 3 :
The area of the triangle formed by the complex numbers z, iz, and z + iz in the Argand’s diagram is
(1) 1/2 |z|2 (2) |z|2 (3) 3/2 |z|2 (4) 2|z|2
Problem 4 :
The conjugate of a complex numbers is 1/(I - 2). Then, the complex number is
|
|
Problem 5 :
(1) 0 (2) 1 (3) 2 (4) 3
1) 0, option (1)
2) i + 1, option (1)
3) 1/2 × |z|2, option (1)
4) z = -1/(i + 2), option (2)
5) 2, option 3.
Problem 1 :
If z is a non zero complex number, such that 2iz2 = z̄ then |z| is
(1) 1/2 (2) 1 (3) 2 (4) 3
Problem 2 :
If |z – 2 + i| ≤ 2, then the greatest value of |z| is
(1)√3 - 2 (2) √3 + 2 (3) √5 - 2 (4) √5 + 2
Problem 3 :
If |z – 3/z| = 2, then the least value of |z| is
(1)1 (2) 2 (3) 3 (4) 5
Problem 4 :
If |z| = 1, then the value of (1 + z)/(1 + z̄) is
(1) z (2) z̄ (3) 1/z (4) 1
Problem 5 :
The solution of the equation |z| - z = 1 + 2i is
|
|
|
|
1) |z| = 1/2, option (1)
2) 2 + √5, So, option (4)
3) The last value is 1, option (1)
4) z, option (1)
5) z = 3/2 - 2i, option (1)
Problem 1 :
If |z1| = 1, |z2| = 2, |z3| = 3 and |9z1z2 + 4z1z3 + z2z3| = 12, then the value of |z1 + z2 + z3| is
(1) 1 (2) 2 (3) 3 (4) 4
Problem 2 :
If z is a complex number such that z ϵ ℂ \ ℝ and z + 1/z ϵ ℝ, then |z| is
(1) 0 (2) 1 (3) 2 (4) 3
Problem 3 :
z1, z2 and z3 are complex numbers such that z1 + z2 + z3 = 0 and |z1| = |z2| = |z3| = 1 then z12 + z22 + z32 is
(1) 3 (2) 2 (3) 1 (4) 0
Problem 4 :
If (z - 1)/(z + 1) is purely imaginary, then |z| is
(1) 1/2 (2) 1 (3) 2 (4) 3
Problem 5 :
If z = x + iy is a complex number such that |z + 2| = |z - 2|, then the locus of z is
(1) real axis (2) imaginary axis (3) ellipse (4) circle
1) |z1 + z2 + z3| = 2, option (2)
2) |z| = 1, option (2)
3) z12 + z22 + z32 = 0, option (4)
4) |z| = 1, option (2)
5) x = 0, option (2)
Problem 1 :
The principal argument of 3/(-1 + i) is
|
|
|
|
Problem 2 :
The principal argument of (sin 40º + i cos 40º)5 is
(1) -110º (2) -70º (3) 70º (4) 110º
Problem 3 :
If (1 + i) (1 + 2i) (1 + 3i) … (1 + ni) = x + iy, then 2 ⋅ 5 ⋅ 10 … (1 + n2) is
(1)1 (2) i (3) x2 + y2 (4) 1 + n2
Problem 4 :
If ω ≠ 1 is a cubic root of unity (1 + ω)7 = A + Bω, then (A, B) equals
(1) (1, 0) (2) (-1, 1) (3) (0,1) (4) (1, 1)
Problem 5 :
|
|
|
|
1) -3𝜋/4, option (3)
2) θ = -110º, option (3)
3) 2 · 5 · 10 .... 1 + n2 = x2 + y2, option (3)
4) (A, B) = (1, 1), option (4)
5) 𝜃 = 𝜋/2, option (4)
Problem 1 :
If α and β are the roots of x2 + x + 1 = 0, then α2020 + β2020 is
(1) -2 (2) -1 (3) 1 (4) 2
Problem 2 :
(1) -2 (2) -1 (3) 1 (4) 2
Problem 3 :
(1) 1 (2) -1 (3) √3i (4) -√3i
Problem 4 :
|
|
|
|
Problem 5 :
1) -1, option (2)
2) 1, option (2)
3) -√3 i, option (4)
4) cis 2𝜋/3, option (1)
5) z = 0, option (1)
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM