We can classify triangles by its side length. With the given coordinates by finding the distance between two points, we can find the length of the side.
Equilateral triangle :
If length of all sides are equal, then it is equilateral triangle.
Isosceles triangle :
If two sides are having the same length, one side is having different length, then it is called isosceles triangle.
Scalene triangle :
If all sides are having different length, then it is called scalene triangle.
Right triangle :
To check if the triangle is right triangle, we use Pythagorean theorem.
Rule :
Square of hypotenuse is equal to sum of squares of remaining sides.
The vertices of a triangle are given. Classify the triangle as scalene, isosceles, or equilateral.
Problem 1 :
(-5, 0), (0, 6), (5, 0)
Solution :
A(-5, 0), B(0, 6), C(5, 0)
AB = √(x2 - x1)² + (y2 - y1)²
= √(0 + 5)² + (6 - 0)²
= √5² + 6²
= √(25 + 36)
AB = √61
BC = √(x2 - x1)² + (y2 - y1)²
= √(5 - 0)² + (0 - 6)²
= √5² + (-6)²
= √(25 + 36)
BC = √61
AC = √(x2 - x1)² + (y2 - y1)²
= √(5 + 5)² + (0 - 0)²
= √(10)² + (0)
= √(100)
AC = 10
As the two sides are equal it is isosceles triangle.
Problem 2 :
(0, -3), (0, 3), (3, 0)
Solution :
A(0, -3), B(0, 3), C(3, 0)
AB = √(x2 - x1)² + (y2 - y1)²
= √(0 - 0)² + (3 + 3)²
= √(0)² + (6)²
= √(36)
AB = 6
BC = √(x2 - x1)² + (y2 - y1)²
= √(3 - 0)² + (0 - 3)²
= √(3)² + (-3)²
= √(9 + 9)
BC = √18
AC = √(x2 - x1)² + (y2 - y1)²
= √(3 - 0)² + (0 + 3)²
= √(3)² + (3)²
= √9 + 9
CA = √18
As the two
sides are equal it is isosceles triangle.
Problem 3 :
(-2, 5), (1, -1), (4, 6)
Solution :
A(-2, 5), B(1, -1), C(4, 6)
AB = √(x2 - x1)² + (y2 - y1)²
= √(1 + 2)² + (-1 - 5)²
= √(3)² + (-6)²
= √(9 + 36)
AB = √45
BC = √(x2 - x1)² + (y2 - y1)²
= √(4 - 1)² + (6 + 1)²
= √(3)² + (7)²
= √(9 + 49)
BC = √58
AC = √(x2 - x1)² + (y2 - y1)²
= √(4 + 2)² + (6 - 5)²
= √ (6)² + (1)²
= √ 36 + 1
AC = √37
As the three sides are different it is scalene triangle.
Problem 4 :
(1, 4), (4, 1), (7, 4)
Solution :
A(1, 4), B(4, 1), C(7, 4)
AB = √(x2 - x1)² + (y2 - y1)²
= √(4 - 1)² + (1 - 4)²
= √(3)² + (-3)²
= √(9 + 9)
AB = √18
BC = √(x2 - x1)² + (y2 - y1)²
= √(7 - 4)² + (4 - 1)²
= √(3)² + (3)²
= √(9 + 9)
BC = √18
AC = √(x2 - x1)² + (y2 - y1)²
= √(7 - 1)² + (4 - 4)²
= √(6)² + (0)²
AC = √36
Using Pythagorean theorem,
AC2 = AB2 + BC2
(√36)2 = (√18)2 + (√18)2
36 = 18+18
36 = 36
Since it satisfies Pythagorean theorem, it is a right triangle.
Problem 5 :
(-1, -6), (1, 1), (4, -5)
Solution :
A(-1, -6), B(1, 1), C(4, -5)
AB = √(x2 - x1)² + (y2 - y1)²
= √(1 + 1)² + (1 + 6)²
= √(2)² + (7)²
= √(4 + 49)
AB = √53
BC = √(x2 - x1)² + (y2
- y1)²
= √(4 - 1)² + (-5 - 1)²
= √(3)² + (-6)²
= √(9 + 36)
BC = √45
AC = √(x2 - x1)² + (y2
- y1)²
= √(4 + 1)² + (-5 + 6)²
= √(5)² + (1)²
= √25 + 1
CA = √26
As the three sides are different, it is scalene triangle.
Problem 6 :
(-4, 3), (2, -1), (8, -1)
Solution :
A(-4, 3), B(2, -1), C(8, -1)
AB = √(x2 - x1)² + (y2 - y1)²
= √(2 + 4)² + (-1 - 3)²
= √(6)² + (-4)²
= √(36 + 16)
AB = √52
BC = √(x2 - x1)² + (y2 - y1)²
= √(8 - 2)² + (-1 + 1)²
= √6²
= √36
BC = 6
AC = √ (x2 - x1)² + (y2 - y1)²
= √ (8 + 4)² + (-1 - 3)²
= √ (12)² + (-4)²
= √144 + 16
AC = √160
As the three
sides are different it is scalene triangle.
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM