BODMAS PRACTICE QUESTIONS

The simple rules to remember the BODMAS is given below.

  • First, simplify operations within Brackets. ( ), { }, [ ]
  • Second, evaluate the exponential form. 22
  • Third, do the division and multiplication one by one from left to right. ÷ and ×
  • Finally, do the addition and subtraction one by one from left to right. + and -

Note :

  • If an expression has more than one set of brackets, do the innermost bracket first.
  • If there is a division sign between two fractions, multiply by the reciprocal of the divisor fraction.

Question 1 :

Simplify 25 - [20 - {10 - (7-5-3)}]

Solution :

= 25 - [20 - {10 - (7-5-3)}]

= 25 - [20 - {10 + 1}]

= 25 - [20 - 11]

= 25 - 9

= 16

Inner Bracket ( )

Inner Bracket { }

Bracket [ ]

Subtraction

Question 2 :

Find out the answer for 100 - 3[20 + {50 - 40}]

Solution :

= 100 - 3[20 + {50 - 40}]

= 100 - 3[20 + 10]

= 100 - × 30

= 100 - 90

= 10

Inner Bracket { }

Bracket [ ]

Multiplication

Subtraction

Question 3 :

7 + (8 - 3 × 2)

Solution :

= 7 + (8 - × 2)

7 + (8 - 6)

= 7 + 2

= 9

Bracket,  Multiplication

Bracket,  Subtraction

Addition

Question 4 :

What would be the answer for 50 - [20 + {30 - (20 - 5)}]

Solution :

50 - [20 + {30 - (20 - 5)}]

= 50 - [20 + {30 - 15}]

= 50 - [20 + 15]

= 50 - 35

= 15

Inner Bracket ( )

Inner Bracket { }

Bracket [ ]

Addition

Question 5 :

Find the value of 150 - [10 + {3 - (20 - 5)}]

Solution :

= 150 - [10 + {3 - (20 - 5)}]

= 150 - [10 + {3 - 15}]

= 150 - [10 - 12]

= 150 + 2

= 152

Inner Bracket ( )

Inner Bracket { }

Bracket [ ]

Addition

Question 6 :

Simplify 1 ÷ 3/7 × (6 + 8 × 3 - 2) + [1/5 ÷ 7/25 - {3/7 + 8/14}]

Solution :

Step 1 :

Find the value of ÷ 3/7 × (6 + 8 × 3 - 2).

 = 1 ÷ 3/7 × (6 + × 3 - 2)

÷ 3/7 × (6 + 24 - 2)

÷ 3/7 × (30 - 2)

× 7/3 × 28

= 196/3

Bracket, Multiplication

Bracket, Addition

Bracket, Subtraction

Change ÷ into ×

  

The value of 1 ÷ 3/7 × (6 + 8 × 3 - 1) = 196/3 ----(1)

Step 2 :

Find the value of [1/5 ÷ 7/25 - {3/7 + 8/14}]

[1/5 ÷ 7/25 - {3/7 + 8/14}]

The LCM of 7, 14 is 14

[1/5 ÷ 7/25 - {3/7 × 2/2 + 8/14}]

= [1/5 ÷ 7/25 - {6/14 + 8/14}

[1/5 ÷ 7/25 - {14/14}]

[1/5 ÷ 7/25 - 1]

= [1/5 × 25/7 - 1]

= [5/7 - 1]

= -2/7

The value of [1/5 ÷ 7/25 - {3/7 + 8/14}] = -2/7 ----(2)

Add (1) + (2), we get

= (196/3) + (-2/7)

= (196/3) - (2/7)

By using cross multiplication,

= (1372 - 6)/21

= (1366)/21

= 65.04

Question 7 :

Using the rule of BODMAS, determine the answer of 

18 ÷ 10 - 4 + 32 ÷ (4 + 10 ÷ 2 - 1)

Solution :

= 18 ÷ 10 - 4 + 32 ÷ (4 + 10 ÷ 2 - 1)

18 ÷ 10 - 4 + 32 ÷  (4 + 5 - 1)

18 ÷ 10 - 4 + 32 ÷ (9 - 1)

18 ÷ 10 - 4 + 32 ÷ 8

1.8 - 4 + 4

= 1.8

 Bracket, Division

 Bracket, Addition

( ), Subtraction

Division

Addition

Question 8 :

10 - [6 - {7 - (6 - 8 - 5)}]

Solution :

= 10 - [6 - {7 - (6 - 8 - 5)}]

= 10 - [6 - {7 + 7}]

= 10 - [6 - 14]

= 10 + 8

18

Inner Bracket ( )

Inner Bracket { }

Inner Bracket [ ]

Addition

Question 9 :

What will the answer of this question

× 1/4 ÷ 3/7 + [45/24 - 2/3 + 5/6 × 2/5]

Solution :

= 5 × 1/4 ÷ 3/7 + [45/24 - 2/3 + 5/6 × 2/5]

 5 × 1/4 ÷ 3/7 +  [45/24 - 2/3 + 1/3]

 5 × 1/4 ÷ 3/7 +  [45/24 - 1/3]

The LCM of 24, 3 is 24

 5 × 1/4 ÷ 3/7 +  [45/24 - 1/3 × 8/8]

 5 × 1/4 ÷ 3/7 +  [45/24 - 8/24]

× 1/4 ÷ 3/7 + 37/24

Changing ÷ into ×.

× 1/4 × 7/3 + 37/24

= 35/12 + 37/24

The LCM of 12, 24 is 24

 35/12 × 2/2 + 37/24

= 70/24 + 37/24

= 107/24

= 4.46

Question 10 :

1800 ÷ 10 {(12 - 6) + (24 - 12)}

Solution :

1800 ÷ 10{(12 - 6) + (24 - 12)}

1800 ÷ 10 {6 + 12}

1800 ÷ 10 × 18

= 180 × 18

= 3240

Inner Brackets ( )

Inner Bracket { }

Division

Multiplication

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More