3x+23x+6+x4-x23x+6=3(x+2)4-x2=22-x2By comparing 22-x2 with the algebraic identitya2-b2=(a+b)(a-b)22-x2=(2+x)(2-x)=3x+23(x+2)+x(2+x)(2-x)LCM=3(2+x)(2-x)=3x+23(x+2)×(2-x)(2-x)+x(2+x)(2-x)×33=(3x+2)(2-x)+3x3(x+2)(2-x)=6x-3x2+4-2x+3x3(x+2)(2-x)=-3x2+7x+43(x+2)(2-x)
Problem 5 :
4-a2a2-9-a-23-a
Solution:
4-a2a2-9-a-23-a4-a2=22-a2By comparing 22-a2 with the algebraic identitya2-b2=(a+b)(a-b)22-a2=(2+a)(2-a)a2-32=(a+3)(a-3)=(2+a)(2-a)(a+3)(a-3)-a-23-aLCM=(a+3)(a-3)=(2+a)(2-a)(a+3)(a-3)+a-23-a×(a+3)(a+3)=(2+a)(2-a)+(a-2)(a+3)(a+3)(a-3)=4-a2+a2-2a+3a-6a2-9=a-2a2-9
Problem 6 :
4yy2-1-2y-2y+1
Solution:
4yy2-1-2y-2y+1By comparing y2-1 with the algebraic identitya2-b2=(a+b)(a-b)y2-1=(y+1)(y-1)=4y(y+1)(y-1)-2y-2y+1LCM=y(y+1)(y-1)=4y(y+1)(y-1)×yy-2y×(y+1)(y-1)(y+1)(y-1)-2y+1×y(y-1)y(y-1)=4y2-2(y+1)(y-1)-2y(y-1)y(y+1)(y-1)=4y2-2y2-1-2y2+2yy(y+1)(y-1)=4y2-2y2+2-2y2+2yy(y+1)(y-1)=2+2yy(y+1)(y-1)=2(1+y)y(y+1)(y-1)=2y(y-1)=2y2-y