Adding and subtracting polynomials is like combining like terms.
Problem 1 :
(3x² - 4x + 8) + (2x – 7x² - 5)
Solution :
= (3x² - 4x + 8) + (2x – 7x² - 5)
Using distributive property.
= 3x² - 4x + 8 + 2x – 7x² - 5
By combining the like terms, we get
= 3x² - 7x² - 4x + 2x + 8 – 5
= -4x² - 2x + 3
Problem 2 :
(3n² + 13n³ + 5n) – (7n + 4n³)
Solution :
= (3n² + 13n³ + 5n) – (7n + 4n³)
= 3n² + 13n³ + 5n – 7n – 4n³
= 3n² + 13n³ - 4n³ + 5n – 7n
= 3n² + 9n³ - 2n
Problem 3 :
(2b² + 8ab³ + 4b) – (9b – 5ab³)
Solution :
= (2b² + 8ab³ + 4b) – (9b – 5ab³)
= 2b² + 8ab³ + 4b – 9b + 5ab³
= 2b² + 8ab³ + 5ab³ + 4b – 9b
= 2b² + 13ab³ - 5b
Problem 4 :
(6y² + 8y4 – 5y) – (9y4 - 7y + 2y²)
Solution :
= (6y² + 8y4 – 5y) – (9y4 - 7y + 2y²)
= 6y² + 8y4 – 5y – 9y4 + 7y – 2y²
= 8y4 – 9y4 + 6y² - 2y² - 5y + 7y
= -y4 + 4y² + 2y
Problem 5 :
(7y² + 2y - 3) + (2 – 4y + 5y²)
Solution :
= (7y² + 2y - 3) + (2 – 4y + 5y²)
= 7y² + 2y – 3 + 2 – 4y + 5y²
= 7y² + 5y² + 2y – 4y – 3 + 2
= 12y² - 2y – 1
Problem 6 :
(3x² + 5x + 2) – (4 – 2x) + (5x² + 7)
Solution :
= (3x² + 5x + 2) – (4 – 2x) + (5x² + 7)
= 3x² + 5x + 2 – 4 + 2x + 5x² + 7
= 3x² + 5x² + 5x + 2x + 2 - 4 + 7
= 8x² + 7x + 5
Problem 7 :
(-2x + 3) + (4x - 3)
Solution :
= (-2x + 3) + (4x - 3)
= -2x + 3 + 4x - 3
= -2x + 4x + 3 - 3
= 2x
Problem 8 :
(2x² + 2x - 4) + (x² + 3x + 7)
Solution :
= (2x² + 2x - 4) + (x² + 3x + 7)
= 2x² + 2x - 4 + x² + 3x + 7
= 2x² + x² + 2x + 3x – 4 + 7
= 3x² + 5x + 3
Problem 9 :
(3a² + a - 4) + (a² - 2a - 1)
Solution :
= (3a² + a - 4) + (a² - 2a - 1)
= 3a² + a – 4 + a² - 2a – 1
= 3a² + a² + a – 2a – 4 – 1
= 4a² - a – 5
Problem 10 :
(t² - 1) + (2t + 3)
Solution:
= (t² - 1) + (2t + 3)
= t² - 1 + 2t + 3
= t² + 2t - 1 + 3
= t² + 2t + 2
Problem 11:
(2x² + 3) + (x² - 2x - 1)
Solution:
= (2x² + 3) + (x² - 2x - 1)
= 2x² + 3 + x² - 2x – 1
= 2x² + x² - 2x + 3 – 1
= 3x² - 2x + 2
Problem 12:
(2x² + 5xy + 3y²) + (8x² - 7y²)
Solution:
= (2x² + 5xy + 3y²) + (8x² - 7y²)
= 2x² + 5xy + 3y² + 8x² - 7y²
= 2x² + 8x² + 5xy + 3y² - 7y²
= 10x² + 5xy – 4y²
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM