Find
(i) (f + g)(x)
(ii) (f – g)(x)
and state the domain of each. Then evaluate f + g and f - g for the given value of x.
Problem 1 :
f(x) = -5∜x, g(x) = 19∜x; x = 16
Solution :
Given, f(x) = -5∜x and g(x) = 19∜x
x = 16
(i) (f + g)(x) = f(x) + g(x)
(f + g)(x) = -5∜x + 19∜x
(f + g)(x) = 14∜x
When x = 16,
(f + g)(16) = 14∜16
= 14∜(2 ⋅ 2 ⋅ 2 ⋅ 2)
(f + g)(16) = 14(2)
(ii) (f - g)(x) = f(x) - g(x)
= -5∜x - 19∜x
(f - g)(x) = = -24∜x
(f - g)(16) = -24∜16
= -24∜2 ⋅ 2 ⋅ 2 ⋅ 2
(f - g)(16) = -24(2)
(f - g)(16) = -48
Domain is set of all positive values.
Problem 2 :
f(x) = ∛2x, g(x) = -11∛2x; x = -4
Solution :
Given, f(x) = ∛2x and g(x) = -11∛2x
x = -4
(i) (f + g)(x) = f(x) + g(x)
(f + g)(x) = ∛2x + (-11∛2x)
(f + g)(x) = -10∛2x
When, x = -4
(f + g)(-4) = -10∛2(-4)
= -10∛(-8)
= 10∛(-2 ⋅ -2 ⋅ -2)
= 10(-2)
(f + g)(-4) = -20
(ii) (f - g)(x) = f(x) - g(x)
(f - g)(x) = ∛2x - (-11∛2x)
(f - g)(x) = 12∛2x
(f - g)(-4) = 12∛2(-4)
= 12∛(-8)
= -12∛(-2 ⋅ -2 ⋅ -2)
(f - g)(-4) = -12(-2)
(f - g)(-4) = 24
Domain is all real values.
Problem 3 :
f(x) = 6x - 4x2 – 7x3, g(x) = 9x2 – 5x; x = -1
Solution :
f(x) = 6x - 4x2 – 7x3 and g(x) = 9x2 – 5x
x = -1
(i) (f + g)(x) = f(x) + g(x)
(f + g)(x) = (6x - 4x2 – 7x3) + (9x2 – 5x)
= 6x - 4x2 – 7x3 + 9x2 – 5x
= x + 5x2 – 7x3
When x = -1
(f + g)(-1) = (-1) + 5(-1)2 – 7(-1)3
(f + g)(-1) = -1 + 5 + 7
(f + g)(-1) = 11
(ii) (f - g)(x) = f(x) - g(x)
= (6x - 4x2 – 7x3) - (9x2 – 5x)
= 6x - 4x2 – 7x3 - 9x2 + 5x
= 11x – 13x2 – 7x3
(f - g)(-1) = 11(-1) – 13(-1)2 – 7(-1)3
= -11 - 13 + 17
(f - g)(-1) = -7
Domain is all real values.
Problem 4 :
f(x) = 11x + 2x2 , g(x) = -7x – 3x2 + 4; x = 2
Solution :
f(x) = 11x + 2x2 and g(x) = -7x – 3x2 + 4
x = 2
(i) (f + g)(x) = f(x) + g(x)
(f + g)(x) = (11x + 2x2) + (-7x – 3x2 + 4)
(f + g)(x) = 11x + 2x2 - 7x – 3x2 + 4
= 4x – x2 + 4
When, x = 2
(f + g)(2) = 4(2) – (2)2 + 4
= 8 – 4 + 4
(f + g)(2) = 8
(ii) (f - g)(x) = f(x) - g(x)
(f - g)(x) = (11x + 2x2) - (-7x – 3x2 + 4)
= 11x + 2x2 + 7x + 3x2 - 4
(f - g)(x) = 18x + 5x2 – 4
(f - g)(2) = 18(2) + 5(2)2 - 4
= 36 + 20 - 4
(f - g)(2) = 52
Domain is all real values.
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM